CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	23

1 (a)

NH	t h 'dot-and-cross' diagrams correct ₃ is pyramidal or trigonal pyramidal ₄ is tetrahedral	(1) (1) (1)	[3]
(b) (i)	nitrogen and hydrogen have different electronegativities N–H bond has a dipole \mathbf{or} $\mathbf{N}^{\delta-}$ — $\mathbf{H}^{\delta+}$ \mathbf{or}	(1)	
	bonding pair is unequally shared	(1)	
(ii)	molecule is not symmetrical or dipoles do not cancel out	(1)	
(iii)	NH_3 has higher boiling point than expected from \emph{M}_r value \emph{or} has higher boiling point than methane $\emph{or}\ NH_3$ is soluble in water	(1)	[4]
`´ one	ee covalent N–H bonds e co-ordinate (dative covalent) N–H bond e ionic bond between NH_4^+ and Cl^-	(1) (1) (1)	[3]

	GCE AS/A LEVEL – October/November 2013	9701	23	
(a) (i)	alkanes or paraffins not hydrocarbons		(1)	
(ii)	$1C_9H_{20} + 14O_2 \rightarrow 9CO_2 + 10H_2O$		(1)	[2]
(b) (i)	carbon carbon monoxide (names required)		(1) (1)	
(ii)	CO is toxic or affects or combines with haemoglobin or carbon causes respiratory problems		(1)	
(iii)	$2C_{14}H_{30} + 15O_2 \rightarrow 28C + 30H_2O$ or			
	$2C_{14}H_{30} + 29O_2 \rightarrow 28CO + 30H_2O$			
	or other balanced equations such as			
	$C_{14}H_{30} + 11O_2 \rightarrow 7C + 7CO + 15H_2O$			
	$C_{14}H_{30} + 18O_2 \rightarrow 7CO + 7CO_2 + 15H_2O$		(1)	[4]
is b	 (c) enthalpy change when 1 mol of a substance is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions 			[2]
(d) wor	king must be shown			
(i)	heat released = m c δ T = 250 × 4.18 × 34.6 = 36157 J = 36.2 kJ		(1) (1)	
(ii)	$M_{\rm r}$ of $C_{14}H_{30} = 198$ mass of $C_{14}H_{30} = 1.00 \times 0.763 = 0.763$ g 0.763 g of $C_{14}H_{30}$ produce 36.2 kJ		(1) (1)	
	198 g of $C_{14}H_{30}$ produce $\frac{30.2 \times 198}{0.763}$ = 9394 kJ mol ⁻¹		(1)	[5]
	555 IIIO		(')	[~]

Mark Scheme

Syllabus

Paper

Page 3

2

[Total: 13]

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	23

3 (a) (i)

halogen	melting point/°C	colour
chlorine	-101	green, yellow or greenish-yellow
bromine	-7	orange or red or brown
		grey
iodine	114	accept black

chlorine and bromine **both** correct (1) iodine correct **for solid** (1)

(ii) down the Group
there are more electrons in the molecule
hence stronger van der Waals' forces

(1)
[4]

(b) (i)

chlorine	1s ² 2s ² 2p ⁶ 3s ² 3p ⁵
bromine 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁵	
or	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵

both needed (1)

(c) (i) gas or low boiling liquid

(1) [2]

(1)

- BrC1 has fewer electrons than Br2 (1) hence weaker van der Waals' forces (1)

 (ii) accept colours in the range yellow, orange, red, brown (1) [4]
- (d) (i) initially solution begins to turn yellow/brown after several minutes black/dark grey solid formed (1)

(ii)
$$Cl_2 + 2KI \rightarrow 2KCl + I_2$$
 (1)

(iii)
$$BrCl + 2KI \rightarrow KCl + KBr + I_2$$
 (1)

(iv) as oxidising agents (1) [5]

[Total: 15]

	Page 5	5	Mark Scheme	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2013	9701	23	
4	(a) (i)	struc	ctural or functional group isomerism		(1)	
	(ii)	S pr	imary alcohol and carboxylic acid – not 'acid' imary alcohol and ester imary alcohol and ester		(1) (1) (1)	
	(iii)		Na₂CO₃ oxylic acid		(1)	
	(iv)		Na hol and carboxylic acid		(1)	[6]
	(b) (i)	n(C0	O_2) = $\frac{24.0}{24000}$ = 0.001 mol		(1)	
	(ii)		2 mol of $\mathbf{Q} \rightarrow 0.001$ mol of \mathbf{CO}_2 ol of $\mathbf{Q} \rightarrow 0.5$ mol of \mathbf{CO}_2		(1)	[2]
	(c) (i)	n(H ₂	$(a) = \frac{48.0}{24000} = 0.002 \text{ mol}$		(1)	
	(ii)		12 mol of $\mathbf{Q} \rightarrow 0.002$ mol of \mathbf{H}_2 ol of $\mathbf{Q} \rightarrow 1$ mol of \mathbf{H}_2		(1)	[2]
	(d) Q is	s ison	ner R		(1)	
	2 Hocor	OCH ₂	lium carbonate $CH_2CO_2H + Na_2CO_3 \rightarrow 2 HOCH_2CH_2CO_2Na + H_2O_3$ roducts d) + CO ₂	(1) (1)	
	HO cor	CH ₂ C	lium metal CH₂CO₂H + 2 Na → NaOCH₂CH₂CO₂Na + H₂ products		(1) (1)	[5]

[Total: 15]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9701	23

5 (a)

О-Н

(1) [1]

(b)

w	CH₃CH₂CO₂H
x	CH₃CH₂COCH₃
Y	(CH ₃)₂CHCO₂H
Z	no reaction

 (4×1) [4]

(c) alcohol is X (no mark for this)

products are

(any two) [2]

[Total: 7]