MARK SCHEME for the October/November 2013 series

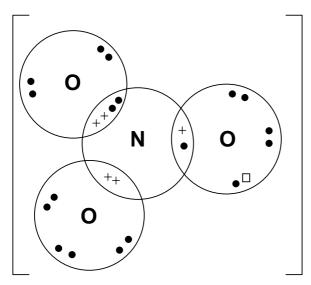
9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.


Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

1 (a)

dative bond to an oxygen using two N electrons	[1]
8 electrons around N in 1 double + 2 single bonds	[1]
a total of 24 electrons, including one, and <i>only</i> one " "	[1]
(the extra electron, " ", can be in a bond or a lone pair)	

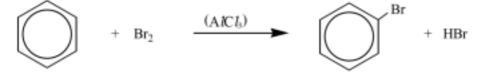
[3]

(b) (i) $2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2 + O_2$ [1]

(ii)	(down the group) nitrates become more stable <i>or</i> are more difficult to decompose <i>or</i> need a higher temperature to decompose	[1]
	because there is less polarisation of the anion/nitrate ion/N–O bonds	[1]
	as radius of M^{2+} /metal ion increases <i>or</i> charge density of the cation decreases	[1]
		[4]

(c)
$$Cu + 4H^+ + 2NO_3^- \longrightarrow Cu^{2+} + 2NO_2 + 2H_2O$$

species [1] balancing [1]


[2]

[Total: 9]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43
2 (a) any t	<i>to from</i> : molecules have negligible volume negligible intermolecular forces <i>or</i> particles are <i>i</i> <i>or</i> to the walls of the container random motion		
	no loss of kinetic energy during collisions <i>or</i> ela elastic molecules)	STIC COIIISIONS (N	2 × [1] [2]
(b) (i) la	w temperature and high pressure	bc	oth required [1]
(ii) (at low T) forces between particles are more important,		[1]
(at high P) volume of molecules are significant		[1]
			[3 max 2]

(c) (i) endothermic; because the equilibrium moves to the right on heating *or* with increasing temperature *or* because bonds are broken during the reaction [1]

(ii) e.g. halogenation or Friedel-Crafts alkylation/acylation

reactants [1] products [1]

other possibilities: Cl_2 , I_2 , R-Cl, RCOCl etc.

[3]

[Total: 7]

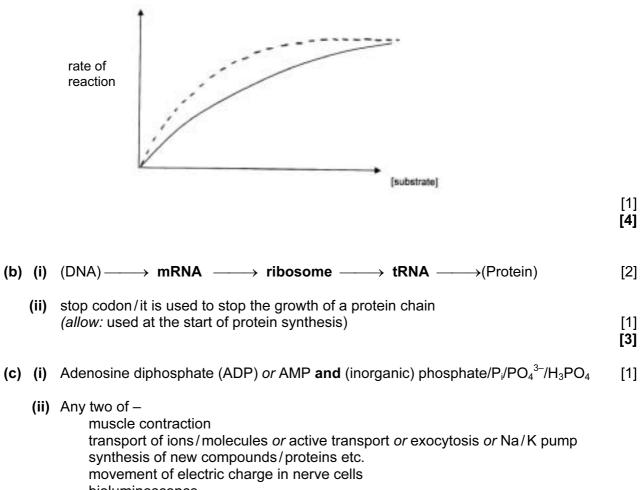
	Page 4				Mark Scheme		Syllabus	Paper
				GCE A LEVEL	. – October/Novembe	er 2013	9701	43
3	(a)	(i)	CH₃l	$Br(g) \longrightarrow CH_3(g)$	ı) + Br(g)			[1]
		(ii)	or A	$lCl_3(g) \longrightarrow \frac{1}{_3}Al$ $\lambda lCl_3(g) \longrightarrow AlCl_3(g)$	$l_2(g) + Cl(g)$			[2]
			(A <i>l</i> C	$\mathcal{I}_3(g) \longrightarrow Al(g)$	+ 3C <i>l</i> (g) for (1) mark)			[3]
	(b)	(i)	due	-	ength <i>or</i> increase in n			[1] [1]
			whic	h causes less effect	tive orbital overlap or l	ess attractio	n for the shared	pair [1]
		(ii)	<i>eithe</i> to its		s electronegative, (he	nce each F v	wants to keep its	selectrons
			<i>or</i> be F)	ecause the bond len	igth is so short there i	s repulsion b	between the lone	e pairs (on
			,	epulsion between the	e nuclei (of F)			[1]
								[4 max 3]
	(c)	(i)	for c	chlorine:				
	(-)	()	ΔH =	= E(H – H) + E(C <i>l</i> –	Cl) - 2E(H - Cl) = 43 = -1	6 + 242 – (2 84 kJ mol ⁻¹	× 431)	[2]
				odine:	→ → → → → → → → → → → → → → → → → → →	G ± 151 /0	× 200)	
			ΔΠ -	- E(I – I) + E(I – I)	-2E(H - I) = 43 = -1	1 kJ mol^{-1}	* 299)	[1]
		(ii)	•		nermally stable down t decreases (more that	• •		[1] ′) [1]
								,
								[5]
	(d)	(i)		Na	0	Br		[4]
				15.2 / 23 ⇒ 0.661	31.8 / 16 1.99	53.0 / 79.9 0.663)	[1]
			÷	0.661⇒ 1.0	3.0	1.0	thus NaE	PrO [1]
								BrO ₃ [1]
		(ii)	_	₂ + 6NaOH ——→Na Br₂ + 6OH⁻ ——→B	aBrO₃ + 5NaBr + 3H₂(brO₃⁻ + 5Br⁻ + 3H₂O	C		species [1]
			0, 01	,2				balancing [1]
								[Total: 15]

	Page 5								Mark	Scher	ne				S	yllab	us	P	aper	
				GCE A LEVEL – October/November 2013 9701 43																
4	(a)	(i)	Cart local			raph	nite)	has	del	ocalise	d	electror	าร	whereas	sili	con's	s elec	ctrons	are	[1]
		(ii)								deloca ovalent			ile e	electrons	whe	reas	germ	anium	n has	[1] [2]
	(b)	(i)	2Pb	O ₂		\rightarrow	2Pt	bO +	O ₂											[1]
		(ii)	PbO) ₂ +	4H(C1 –		→ Pt	$\mathbf{C}l_2$	+ C <i>l</i> ₂ +	2H	I ₂ O								[1]
		(iii)	SnO) + 2	2Na	ОН		→ ľ	la₂S	nO ₂ + I	H ₂ C	C								[1]
		(iv)	GeC	; <i>l</i> 4 +	+ 2H	l ₂ O -		→ G	GeO2	+ 4HC	1									[1] [4]
																		[Tota	al: 6]	

	Page 6		Syllabus	Paper
		GCE A LEVEL – October/November 2013	9701	43
5	(a) (i)	Br ₂ (aq) electrophilic substitution $^{3Br_2} \longrightarrow Br \longrightarrow OH \left(+ 3 HBr\right)$ Br		[1] [1]
				[1]
	(ii)	no special conditions electrophilic addition $Br_2 \longrightarrow Br$ (allow bromohydrin or	dibromida	[1] [1]
		Br if Br ₂ (aq) has been use		
				product [1]
				product [1]
	(iii)	light/UV <i>or</i> heat (free) radical substitution		[1] [1]
		$Br_2 \longrightarrow \left(\begin{array}{c} Br \\ + Br \end{array} \right)$		
		balanced equation in (i) (i.e. $3Br_2$ and $3HBr$) balanced equation in (iii) (i.e. Br_2 and HBr)		product [1] [1] [1]
			[1	1 max 10]
	(b) (i)	ОН СН ₃ СО ₂ Н		
		C D E		
		3 correct structu	res (can be in an	y order) 3 × [1]
	(ii)	results of tests: with 2,4–DNPH: C and D with I ₂ + OH ⁻ : D only with NaOH: D and E (N.B. letters may be different – must refer to the candidate	e's formulae)	[1] [1] [1] [6]
				[Total: 16]

	Page 7			Mark Scheme		Syllabus	Paper
			GCE A LE	VEL – October/Novemb	er 2013	9701	43
6	(a)	A (Brons	ted-Lowry) acid	is a proton donor.			[1] [1]
	(b)	H	$ \begin{array}{c} & H \\ & \bullet \\ H \\ H \\ & \bullet \\ & $	н н н н	H H A Amino group	Н	
		at le lone a H-	ast one H ₂ O mo pair (on oxyge bond	lecule in the right orientat en in H ₂ O <i>or</i> –CO ₂ H <i>or</i> least once (at each end o	ion: a a on nitrogen)		[1]
		(ii) + H ₃ N-	CH ₂	_			[1] [5]
	(c)	allow eith	her $S_N 1$ or $S_N 2$ (or CO_2^-) CO_2H δ^+ CI δ^-	$\begin{bmatrix} CO_2H \\ (+) \\ H_3N \\ H_3C \\ H \end{bmatrix} \xrightarrow{(-)}_{H} \\ H_{H_3}C \\ H \end{bmatrix}$	CH ₃ ↓ -H ⁺ CO ₂ H	+ C Г	
		any three	curly arrov curly arrov	shown in C–C l w from lone pair on NH ₃ w from C–C l bond to C l ate transition state or c arge			S _№ 1, with [3] [3]
	(d)	lysine @ aspartic	рН 1: acid @ pН 12:	$^{+}NH_{3}(CH_{2})_{4}CH(NH_{3}^{+})CO$ $^{-}O_{2}CCH_{2}CH(NH_{2})CO_{2}^{-}$			[1] [1] [2]

Pa	Page 8		Mark Scheme	Syllabus	Paper
			GCE A LEVEL – October/November 2013	9701	43
(e)	(i)	6 (si	x)		[1]
	(ii)	eithe or	er H ₂ NCH(CH ₃)CO–NHCH(CH ₂ OH)CO ₂ H H ₂ NCH(CH ₂ OH)CO–NHCH(CH ₃)CO ₂ H		[2] [3]
(f)	(i)		pounds have the same structural formula but different (spatial) arrangement/position <i>or</i> orientation	of atoms in space	[1]
	(ii)	J			[1]
((iii)	H ₂ N	H CH ₃		
		HO			[1] [3]
					[Total: 17]


Page 9	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9701	43

Section B

7	(a)	(i)	Metals such as Hg, Ag, Cd, Pb, Cu (identified – NOT just "heavy metals")	
			(allow names, atomic symbols or ions, names or formulae of salts $- e.g. Pb(NO_3)_2$)	
			<i>or</i> penicillin <i>or</i> organophosphorus insecticide etc.	[1]

(ii)	The ion/inhibitor binds to a part of the enzyme molecule away from the active site <i>or</i> to an allosteric site	[1]
	This changes the shape of the active site or denatures the enzyme	[1]
	OR the inhibitor forms a covalent/permanent bond with the active site	[1]
	blocking entry of the substrate	[1]

(iii)

- bioluminescence
- non-shivering thermogenesis **DNA** synthesis/reproduction

2 × [1] **[3]**

[Total: 10]

Page 1				Syllabus	Paper			
			GCE A LEVEL – October/November 2013	9701	43			
8	(a) NM	/IR and radiowaves (<i>or</i> VHF/UHF <i>or</i> 40 – 800 MHz)						
	 (b) NMR: protons have (nuclear) spin or (spinning) proton produces magnetic moment/field or two spin states or protons can align with or against an applied magnetic field there is insufficient electron density/cloud around H atoms for X-ray crystallograph 							
	the	aphy [1] [2]						
	(c) Sul	fur, b	ecause it has the highest electron density		[1] [1]			
	(d) (i)		$=\frac{100}{1.1} \times n$ $\frac{100 \times 0.15}{4.5 \times 1.1} = 3.03 = 3$	(calculation must	t be shown) [1]			
	(ii)	the -	-OH peak (broad singlet) at δ 4.6		[1]			
	(iii)	3 (three)						
	(iv)	Q has peak at 11.7δ. which is due to –CO ₂ H (This can only be formed by oxidising a <i>primary</i> alcohol.)						
		or P has 4 peaks in its NMR spectrum, not 3 in a secondary alcohol with 3 carbons, two (methyl) groups will be in the chemical environment (or wtte)			[1] the same [1]			
		or ai	halysis of the splitting pattern in P : the peaks at δ 0.9 ach must be adjacent to a –CH ₂ – group. (hence –CH ₂					
	(v)	CH ₃	CH ₂ CO ₂ H (structure needed, not name)		[1] [6]			
					[Total: 10]			

	Page 1			Mark Scheme			Syllabus	Paper			
				GCE A LEVEL – October/November 2013			9701	43			
9	(a)	(i)	diam	nond and graphite				[1]			
		(ii)	any	three from							
		. ,	-		graphite diamo						
			colo	ur trical conductivity	black good conductor	transparent/colourless non-conductor		S			
				Iness	soft/slippery		non slippery				
			density		less dense than	more	e dense than graphite				
			melt	ing point	diamond Iower	higher	-				
					ionol inglioi			3 × [1]			
								[4]			
		_									
	(b)	Because each carbon is only bonded to 3 others <i>or</i> is unsaturated/doubly-bonded/sp ² <i>or</i> has 3 bonding locations									
		(NOT forms only 3 <i>bonds</i>)									
		C ₆₀	Haa	[1]							
		060	160					[2]			
	(c)) (i) Number of atoms carbon present = $0.001 \times 6.02 \times 10^{23} / 12 = 5.02 \times 10^{19}$				[1]					
		(ii))								
		Area of sheet = 690 × 2.51 × 10 ¹⁹ = 1.73 × 10²² nm²									
	(iii) Graphene: Yes,			ohene: Yes, since it ha	s, since it has free/delocalised/mobile electro			[1]			
		Buckminsterfullerene: No, (although there is delocalisation within each sph									
		it consists of separate/simple/discrete molecules/spheres/particles,						/			
	(so no delocalisation from o							[1]			
		or electrons are trapped within each molecule/sphere									
								[Total: 10]			
								[Total: 10]			