MARK SCHEME for the October/November 2014 series

9701 CHEMISTRY

9701/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

Question	Marking point		Marks	Marks
1 (a) (i)	m/e	identity		
	35	${ }^{35} \mathrm{Cl}$		
	37	${ }^{37} \mathrm{Cl}$		
	70	${ }^{35} \mathrm{Cl}{ }^{35} \mathrm{Cl}$ or ${ }^{35} \mathrm{Cl}_{2}$		
	72	${ }^{37} \mathrm{Cl}{ }^{35} \mathrm{Cl}$		
	74	${ }^{37} \mathrm{Cl}{ }^{37} \mathrm{Cl}$ or ${ }^{37} \mathrm{Cl}_{2}$		
	35, 37, 70, 72, 74 correct formulae at least one structure as a positive		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
(ii)	9:6:1		1	[4]
(b) (i)	correct charges correct electrons		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
(ii)	$\begin{aligned} & \text { Lattice energy }=\Delta H_{\mathrm{f}}\left(\mathrm{SrCl}_{2}\right)-\left(\Delta H_{\text {atom }}(\mathrm{Sr})+\Delta H_{\mathrm{il}}(\mathrm{Sr})+\Delta H_{\mathrm{iz}}(\mathrm{Sr})+\Delta H_{\text {atom }}(\mathrm{Cl})+2 \Delta H_{\mathrm{ea}}(\mathrm{Cl})\right) \\ & =+(-830)-(+164+548+1060+242+(2 \times-349)) \\ & =-2146(\mathrm{~kJ} \mathrm{~mol} \end{aligned}$		$\begin{aligned} & 1 \\ & \mathbf{1} \\ & \mathbf{1} \end{aligned}$	[5]
(c) (i)	$\mathrm{SrCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$		1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

(ii)	$\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{SrO}+2 \mathrm{NO}_{2}+0.5 \mathrm{O}_{2}$	1	[2]
(d)	(down the group) nitrates become more stable / require a higher temperature to decompose as size/radius of ion increases OR charge density of ion decreases so polarisation/distortion of anion/nitrate ion/ $\mathrm{NO}_{3}{ }^{-} / \mathrm{NO}$ bond decreases	1 1 1	[3]
2 (a)	$\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ five correct species correct balancing	1 1	[2]
(b) (i)	$\left[\mathrm{BrO}_{3}^{-}\right] 1^{\text {st }}$ order and the concentration is $\times 2$, rate doubles OR evidence using expt $1 \& 4$ eg ratios $\left[\mathrm{H}^{+}\right] 2^{\text {nd }}$ order and the concentration is $\times 2$, rate $\times 4$ OR evidence using expt $1 \& 2$ $[\mathrm{Br}] 1^{\text {st }}$ order and the concentration is $\times 4$, rate $\times 4$ OR evidence using expt $1 \& 3$ eg ratios	1 1 1	
(ii)	(Rate $=$) $k\left[\mathrm{BrO}_{3}{ }^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$	1	
(iii)	$\begin{aligned} & \mathrm{k}=1.32 \\ & \mathrm{~mol}^{-3} \mathrm{dm}^{9} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	[6]
3 (a) (i)	chromium and copper	1	
(ii)	(all orbitals have the) same energy	1	
(iii)	correct id of one higher energy d orbital the other higher energy d orbital	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	[4]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

(b) (i)	pale blue precipitate \mathbf{A} solution B solution C	$\mathrm{Cu}(\mathrm{OH})_{2} \quad \mathrm{OR} \quad\left[\mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$ $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ OR $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ $\left[\mathrm{CuCl}_{4}\right]^{2-}$	1 1 1	
(ii)	solution B solution C	royal/deep/dark blue OR violet-blue yellow/green	1	
(iii)	redox OR oxidation of Cu OR reduction of Cu^{2+} AND reducing agent/reductant		1	[6]
(c)	3d-shell is full $/ 3 d^{10} /$ no vacant d-orbital / d-orbitals full electrons cannot move between orbitals OR transitions cannot occur		1	[2]
(d)	green/yellow orange/red AND blue/violet light is absorbed		1 1	[2]
4 (a)	(HCl) stronger acid/more dissociated/ionised in solution (HCl has) more ions/higher concentration of ions		1	[2]
(b) (i)	A solution that resists changes in the $\mathrm{pH} /$ keeps pH fairly constant when small quantities/amounts/vols of acid $/ \mathrm{H}^{+}$or base $/ \mathrm{OH}^{-}$are added		1	
(ii)	add (ethanoic acid) to NaOH OR an equation excess (ethanoic acid) OR mix with sodium ethanoate		1	[4]
(c)	$\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{3}{ }^{+}\right) \mathrm{COOH}$ $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}$		1 1	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

(d) (i)	pKa 2.99 pKa 4.40	1 1	
(ii)	 (S, R) (R,S) any two of the above	2	[4]
5 (a)	any five of these seven points. - σ-bonds are between C-C OR C-H - carbons are sp^{2} - rings of charge above and below the ring must be in diagram - presence of σ-bonds - electrons/bonds are delocalised - planar molecule/bond angles 120° - all C-C are the same length/have intermediate bond length between $\mathrm{C}-\mathrm{C}$ \& $\mathrm{C}=\mathrm{C}$	5	[5]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

(b) | Reagent Xe eg. $\mathrm{Br}_{2}, \mathrm{HNO}_{3}, \mathrm{Na}, \mathrm{NaOH}$, benzenediazonium salt/ion; $\mathrm{RCOCl} ; \mathrm{Fe}^{3+} ; \mathrm{H}_{2}+\mathrm{Ni}$ |
| :--- |
| substituted product for $\mathrm{L}-\mathrm{DOPA} \&$ vanillin (examples given are for $\mathrm{X}=\mathrm{Br}_{2}$ and NaOH , | (

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

| (ii) | | | |
| :--- | :--- | :--- | :--- | :--- |
| (iii) any two of ketone, amine or ether | | | |

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

(b)

1 mark for each correct structure
1 mark for each correct reaction type

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

7 (a)	(ratio of) the concentrations/distribution/amount/mass of solute in two (immiscible) solvents at equilibrium OR equilibrium constant OR includes expression with K	1	[2]
(b)	$\begin{aligned} K_{\mathrm{pc}} & =[\mathrm{J} \text { in ether }]\left[\mathrm{J} \text { in } \mathrm{H}_{2} \mathrm{O}\right] \\ & =(2.14 / 20) /(5-2.14 / 75) \\ & =2.81 \text { OR } 2.82 \end{aligned}$	1	[2]
(c)	$\begin{array}{ll} 1^{\text {st }} \text { extraction: } & \begin{aligned} 2.81 & =(x / 10) /(5.0-\mathrm{x}) / 75 \\ & 2.81(5-\mathrm{x})=7.5 \mathrm{x} \\ \mathrm{x} & =1.36 \mathrm{~g} \end{aligned} \\ & \\ 2^{\text {nd }} \text { extraction: } & \quad \begin{aligned} 2.81 & =(\mathrm{y} / 10) /(3.64-\mathrm{y}) / 75 \\ & 2.81(3.64-\mathrm{y})=7.5 \mathrm{y} \\ \mathrm{y} & =0.99 \mathrm{~g} \end{aligned} \\ & \end{array}$		[2]
(d) (i)	water/solvent/named solvent	1	
(ii)	non-volatile liquid, for example mineral oil or at least a C_{15} hydrocarbon oil	1	
(iii)	1. R_{f} (retardation factor) or distance travelled by solute and distance by solvent 2. retention time	1	[4]

| (e) | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| [1] | | | | |

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

| (c) (i) | structures of the following aldehydes: | |
| :--- | :--- | :--- | :--- | :--- |

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2014	9701	43

$\left.\begin{array}{|c|l|l|l|}\hline \text { (e) (i) } & \begin{array}{l}\text { disrupts hydrogen/ionic bonds as }-\mathrm{COOH} / \mathrm{NH}_{3}{ }^{+} \text {is deprotonated } \\ \mathrm{OR}-\mathrm{NH}_{3}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \text { linked to hydrogen/ionic bond disrupted } \\ \mathrm{OR}-\mathrm{COOH}+\mathrm{OH}^{-} \rightarrow-\mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \text { linked to hydrogen/ionic bond disrupted }\end{array} & 1\end{array}\right\}$

