Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

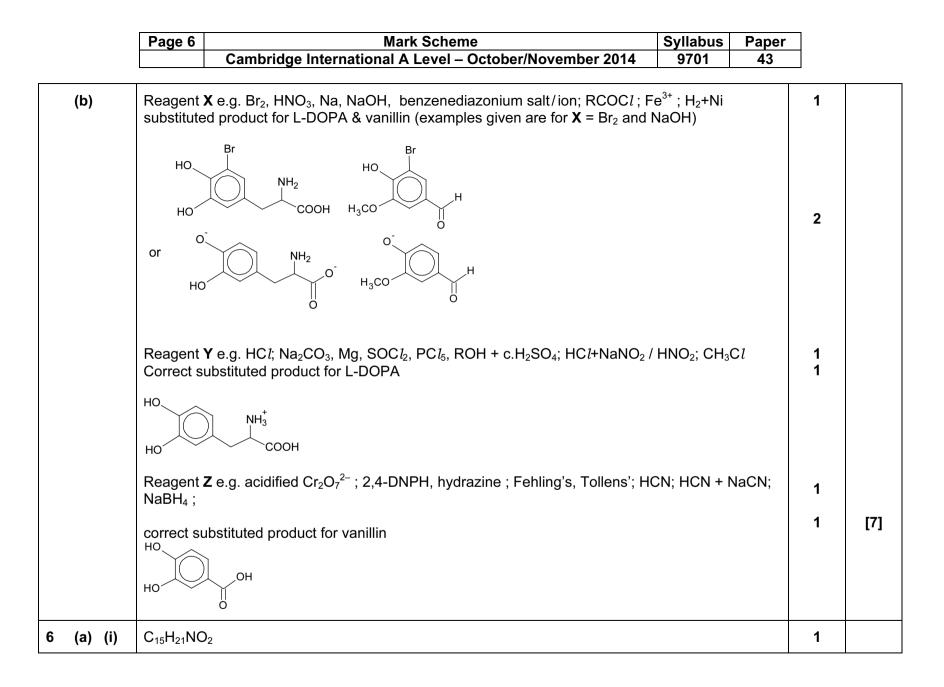
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43

Question	Marking point			Marks	Marks total
1 (a) (i)	Γ	m/e	identity		
	-	35	³⁵ C1		
	-	37	³⁷ C <i>l</i>		
	-	70	³⁵ Cl ³⁵ Cl <i>or</i> ³⁵ Cl ₂		
	-	72	³⁷ Cl ³⁵ Cl		
		74	³⁷ Cl ³⁷ Cl <i>or</i> ³⁷ Cl ₂		
	35, 37, 70, 72, 74 correct formulae at least one structu	ire as a posi	tive ion	1 1 1	
(ii)	9:6:1			1	[4]
(b) (i)	correct charges correct electrons		-	1	
(ii)	Lattice energy = $\Delta H_{\rm f}({\rm SrC} l_2) - (\Delta l_2) = +(-830) - (+ 164 + 548 + 106)$ = - 2146 (kJ mol ⁻¹)			$_{\text{om}}(\text{Cl}) + 2\Delta H_{\text{ea}}(\text{Cl}))$ 1 1 1	[5]
(c) (i)	$SrCO_3 + 2HNO_3 \rightarrow Sr(NO_3)_2 +$	+ CO ₂ + H ₂	0	1	

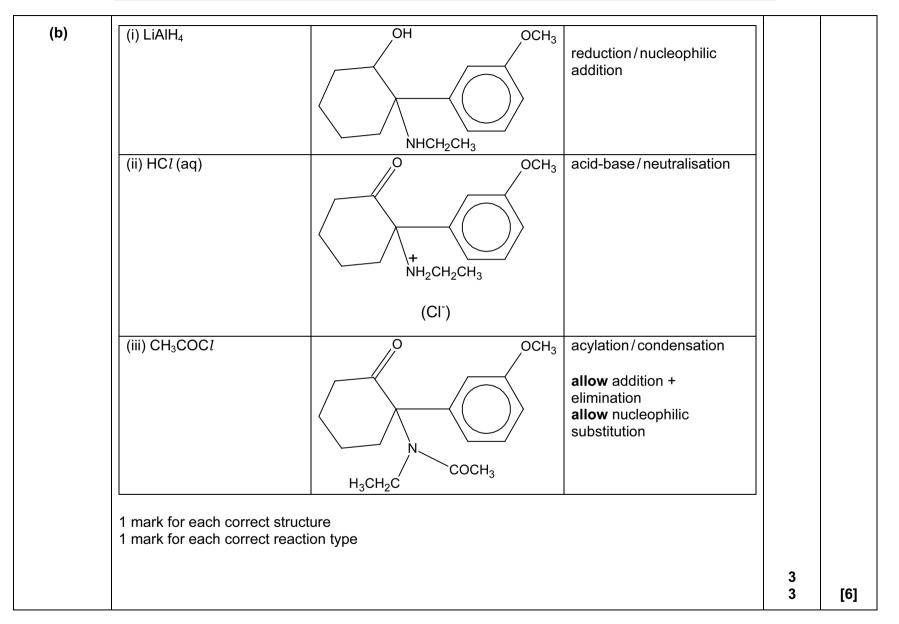
Page 3	Mark Scheme S		Paper
	Cambridge International A Level – October/November 2014	9701	43


((ii)	$Sr(NO_3)_2 \Rightarrow SrO + 2NO_2 + 0.5 O_2$	1	[2]
(d)		(down the group) nitrates become more stable / require a higher temperature to decompose	1	
		as size/radius of ion increases OR charge density of ion decreases so polarisation/distortion of anion/nitrate ion/NO ₃ ^{$-$} /NO bond decreases	1 1	[3]
2 (a)		$BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ five correct species correct balancing	1 1	[2]
(b)		$[BrO_3^{-}]$ 1 st order and the concentration is x2, rate doubles OR evidence using expt 1 & 4 eg ratios $[H^*]$ 2 nd order and the concentration is x2, rate x4 OR evidence using expt 1 & 2 $[Br^{-}]$ 1 st order and the concentration is x4, rate x4 OR evidence using expt 1 & 3 eg ratios	1 1 1	
((ii)	(Rate =) $k [BrO_3^{-}][Br^{-}][H^+]^2$	1	
(i	iii)	k = 1.32 mol ⁻³ dm ⁹ s ⁻¹	1 1	[6]
3 (a)	(i)	chromium and copper	1	
((ii)	(all orbitals have the) same energy	1	
(i	iii)	correct id of one higher energy d orbital the other higher energy d orbital	1 1	[4]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43

	u ala blua una sisitata A			
(b) (i)	pale blue precipitate A solution B	$Cu(OH)_2$ OR [Cu(OH)_2(H_2O)_4] [Cu(NH_3)_4(H_2O)_2]^{2+} OR [Cu(NH_3)_4]^{2+}		
	solution C	$[Cu(NH_3)_4(H_2O)_2]$ OR $[Cu(NH_3)_4]$ $[CuC_4]^{2-}$	1	
	Solution C			
(ii)	solution B	royal/deep/dark blue OR violet-blue	1	
	solution C	yellow/green	1	
(iii)	redox OR oxidation of	Cu OR reduction of Cu ²⁺	1	
	AND reducing agent/redu			[6]
(c)	3d-shell is full/3d ¹⁰ /no va	cant d-orbital/d-orbital s full	1	
	electrons cannot move be	tween orbitals OR transitions cannot occur	1	[2]
(d)	green/yellow		1	
.,	orange/red AND blue/vio	let light is <u>absorbed</u>	1	[2]
4 (a)	(HC <i>l</i>) stronger acid/more	dissociated / ionised in solution	1	
()	(HCl has) more ions/high		1	[2]
(b) (i)	A solution that resists cha	nges in the pH/keeps pH <i>fairly</i> constant	1	
		nounts/vols of acid/H⁺ or base/OH⁻ are added	1	
(ii)	add (ethanoic acid) to Na	OH OR an equation	1	
()	excess (ethanoic acid)	•	1	[4]
	OR mix with sodium etha	noate		
(c)	CH ₃ CH(NH ₂)COOH + H ⁺ •		1	
	CH ₃ CH(NH ₂)COOH + OH	\rightarrow CH ₃ CH(NH ₂)COO ⁻ + H ₂ O	1	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43


(d) (i)	pKa 2.99 HO HO OH OH OH OH OH OH	1	
	$pKa 4.40 \qquad HO \qquad \longrightarrow \qquad OH \qquad OH \qquad OH \qquad OH \qquad OH \qquad OH $	1	
(ii)	$\begin{array}{cccc} HO \\ HOOC \\ H$	2	[4]
5 (a)	 any five of these seven points. σ-bonds are between C-C OR C-H carbons are sp² rings of charge above and below the ring must be in diagram presence of σ-bonds electrons/bonds are delocalised planar molecule/bond angles 120° all C-C are the same length/have intermediate bond length between C-C & C=C 	5	[5]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43

(ii)	O OCH ₃	1	
	* NHCH ₂ CH ₃		
(iii)	any two of ketone, amine or ether	2	[4]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9701	43

7	(a)	(ratio of) the concentrations/distribution/amount/mass of solute in two (immiscible) solvents at equilibrium OR equilibrium constant OR includes expression with K	1 1	[2]
	(b)	$K_{pc} = [J \text{ in ether}]/[J \text{ in } H_2O]$ = (2.14/20)/(5–2.14/75) =2.81 OR 2.82		[2]
	(c)	1^{st} extraction: $2.81 = (x/10)/(5.0-x)/75$ $2.81(5-x) = 7.5x$ $x = 1.36 g$ 2^{nd} extraction: $2.81 = (y/10)/(3.64-y)/75$ $2.81(3.64-y) = 7.5y$ $y = 0.99 g$	1	[2]
	(d) (i)	water/solvent/named solvent		
	(ii)	non-volatile liquid, for example mineral oil or at least a C_{15} hydrocarbon oil		
	(iii)	1. R_f (retardation factor) or distance travelled by solute and distance by solvent 2. retention time		[4]

		Page 10	Mark Scheme S	Syllabus	Paper	1	
			nbridge International A Level – October/November 2014	9701	43		
	(e)		CO ₂ H ²			1	[1]
			CH ₂ OH 1				
			CO ₂ H 3				
			CO ₂ t				
8	(a)	C = 33 % A = T = 17 %				1 1	[2]
	(b) (i)	only one isomer may be active/be of therapeutic benefit				1	
	(ii)	the other (stereo) isomer may cause harm/side effects				1	[2]

		Page 11 Mark Scheme Syllabus Paper		
		Cambridge International A Level – October/November 2014 9701 43		
	(c) (i)	structures of the following aldehydes:		
		two correct structures = 1 mark two further correct structures – 1 mark	1	
	(ii)	3-methylbutanal	1	
	(iii)	pentanal5 absorptions2-methylbutanal5 absorptionsdimethylpropanal2 absorptions	1 1 1	[6]
9	(a)	nylon, terylene – condensation; PVC – addition – all three correct	1	[1]
	(b)	correct fully displayed formula of -CO-NH- unit correct polymer structure H H H H H H H H H H	1 1	[2]
	(c)	sequence / order of amino acids (in the polypeptide chain)	1	[1]
	(d)	hydrogen bond C=O and N-H in two different amino acids in the backbone diagram	1 1	[2]

	Page 12	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – October/November 2014	9701	43		
(e) (i)		ydrogen/ionic bonds as $-COOH/NH_3^+$ is deprotonated $A_2^+ + OH^- \rightarrow NH_2 + H_2O$ linked to hydrogen/ionic bond disrupted				
		$H + OH^{-}$ $\to COO^{-} + H_{0}O$ linked to by drog on / ionic bond disrupted			1	

(iii)	(Heat to 70 °C) breaks the van der Waals' forces/hydrogen bonding	1	[3]
(ii)	Hg ²⁺ interferes with/breaks the disulfide bond/bridge not sulfite, sulfate, sulfur, sulfide OR -S-S- shown with Hg ²⁺ in an equation OR disrupting ionic interactions linked to carboxyl/COO– groups	1	
	OR –COOH + OH ⁻ \rightarrow –COO ⁻ + H ₂ O linked to hydrogen/ionic bond disrupted	1	