CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the October／November 2015 series

9701 CHEMISTRY

9701／22
Paper 2 （AS Structured Questions），maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some Cambridge O Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9701	22

Question	Mark Scheme					Mark	Total
1 (a)	name of isotope	type of particle	charge	symbol	electron configuration	[5]	[5]
	carbon-13	atom	0	${ }_{6}^{13} \mathrm{C}$	$1 s^{2} 2 s^{2} 2 p^{2}$		
	chloride(-37)	anion	$1-$	Cl	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$		
	sulfur-34	atom	0	${ }_{16}^{34} \mathrm{~S}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$		
	iron-54	cation	2+	${ }_{26}^{54} \mathrm{Fe}^{(2+)}$	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6}$		
(b) (i)	ability/tendency/power of an atom/nucleus to attract/pull electron(s) in a covalent bond/shared pair of electrons/bonding pair of electrons					[1] [1]	[2]
(ii)	Covalent overlap of orbitals OR shared pair(s) (of electrons) OR metallic positive ions/cations surrounded by delocalised electrons					${ }^{[11}$ [1] [1] [1]	[2]
(iii)	Ionic/electrovalent (electrostatic) Attraction between oppositely charged/+ve and -ve ions					$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(c) (i)	similar strength/amount/number of intermolecular forces/induced dipole/van der Waals'/VdW/London forces/LDF/dispersion forces therefore similar energy needed					[1] [1]	[2]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	$\mathbf{9 7 0 1}$	22

Question	Mark Scheme	Mark	Total
(ii)	M1 HCl polar/has a dipole AND F_{2} non-polar/has no dipole OR (permanent) dipole (-dipole) attractions/forces between HCl (molecules) AND induced dipole (-induced dipole) attractions/forces/LDFs between F_{2} (molecules) M2 more energy needed for HCl than F_{2} OR pd-pd forces stronger than id-id forces OR IMFs/VdWs in HCl stronger than in F_{2}	[1] [1]	[2]
(iii)	Hydrogen bonding (between methanol molecules) Stronger than IMFs/van der Waals' in other three/is the strongest intermolecular force	[1] [1]	[2]
			[17]
2 (a)	M1 Heat (energy) change (or $\mathrm{H}_{\text {prod }}-\mathrm{H}_{\text {react }}$) measured at constant pressure OR enthalpy change when the amount/moles of reactants as shown in a (reaction) equation react together to give products M2 measured at standard conditions	[1] [1]	[2]
(b) (i)	$\mathrm{q}=2125.53$	[1]	[1]
(ii)	amount $=0.025(0)$	[1]	[1]
(iii)	-85.(0)	[1]	[1]

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(iv)		[1]	[1]
(v)	$\begin{aligned} & \Delta H+9.6=-85.0 \\ & \Delta H=-85.0-9.6=-94.6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	[1]	[1]
			[7]
3 (a) (i)	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{O} \text { or } \mathrm{Na}_{2} \mathrm{O}_{2} ; \mathrm{MgO} ; \\ & \mathrm{P}_{4} \mathrm{O}_{10} \text { or } \mathrm{P}_{4} \mathrm{O}_{6} ; \mathrm{SO}_{2} \end{aligned}$	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
(ii)	Na: Yellow/orange/gold flame/white solid/powder/smoke $4 \mathrm{Na}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O} \text { or } 2 \mathrm{Na}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}$ S: Blue flame/(yellow) solid melts/turns red/amber/white fumes $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$	$\begin{aligned} & {[1]} \\ & {[1]} \\ & {[1]} \\ & {[1]} \end{aligned}$	[4]
(b) (i)	acidic P and S amphoteric Al and basic Na and Mg	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
(ii)	acidic: covalent (bonding) basic: ionic (bonding)	[1] [1]	[2]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(iii)	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \mathrm{OR} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 22 \mathrm{Al}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{OR} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAl}(\mathrm{OH})_{4} \mathrm{OR} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}_{2} \mathrm{NaAlO}_{2}+\mathrm{H}_{2} \mathrm{OOR} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Al}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-} \mathrm{OR} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{\mathrm{OR}} \\ & \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{AlO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	[1] [1]	[2]
(c)	```sulfur forms \(\mathrm{SO}_{2} / \mathrm{SO}_{2}+/\) mixes \(\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}\) or in words OR \(\mathrm{SO}_{2}+/\) mixes \(\mathrm{H}_{2} \mathrm{O}(\rightarrow\) acid \() /\) or in words OR \(\mathrm{SO}_{2}+/\) mixes \(\mathrm{H}_{2} \mathrm{O}+\left(1 / 2 \mathrm{O}_{2}\right) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4} /\) or in words```	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
			[14]
$4 \quad$ (a) (i)	Nucleophilic Substitution	[1]	[1]
(ii)	Has a chiral centre/carbon OR has a carbon/C attached to 4 different groups/atoms/chains OR has no plane/line of symmetry	[1]	[1]
(iii)		[1+1]	[2]
(iv)	Elimination	[1]	[1]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9701	22

Question	Mark Scheme		Mark	Total
(v)	 cis-but-2-ene trans-but-2-ene		[1] [1]	[2]
(vi)	But-1-ene 2 Hs on one of the double-bonded Cs OR does not have 2 different groups on both atoms/each atom in $\mathrm{C}=\mathrm{C}$		[1] [1]	[2]
(b) (i)	ammonia/ NH_{3}		[1]	[1]
(ii)	propanoyl chloride $/ \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COCl}$		[1]	[1]
(iii)	$\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NHCOC}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{3}$		[1]	[1]
(iv)	Reduction LiAlH_{4} / lithium aluminium hydride / lithium tetrahydridoaluminate	(1)	$\begin{gathered} {[1]} \\ {[1]} \end{gathered}$	[2]
(v)	aluminium oxide		[1]	[1]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9701	22

Question	Mark Scheme	Mark	Total
(vi)	M 1 = correct structure of Y and curly arrow from double bond to H M 2 = dipole and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br M3 = correct intermediate $\mathrm{M} 4=\mathrm{Br}^{-}$with lone pair and curly arrow from lone pair to $\mathrm{C}(+)$	$\begin{gathered} {[1]} \\ {[1]} \\ {[1]} \\ {[1]} \end{gathered}$	[4]
(vii)	electrophilic addition	[1]	[1]
(viii)	secondary carbocation more stable than primary due to electron releasing character/(positive) inductive effect of alkyl groups	$\begin{aligned} & {[1]} \\ & {[1]} \end{aligned}$	[2]
			[22]

