Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

SPECIMEN MARK SCHEME

MAXIMUM MARK: 100

Mark scheme abbreviations

;	separates marking points
R	alternative answers for the same point
A	reject

1 (a) (i) carbonates become more stable down the Group/higher decomposition temperature (1) cation $/ \mathrm{M}^{2+}$ radius/size increases down the group $/ \mathrm{M}^{2+}$ charge density decreases (1) anion/carbonate ion/ $\mathrm{CO}_{3}{ }^{2-}$ suffers less polarisation/distortion (1)
(ii) ionic radii quoted: $\mathrm{Ca}^{2+}: 0.099 \mathrm{~nm}, \mathrm{Zn}^{2+} 0.074 \mathrm{~nm}, \mathrm{~Pb}^{2+}: 0.120 \mathrm{~nm}(1)$ thus we expect ZnCO_{3} to be less stable, but PbCO_{3} to be more stable (1)
if candidate states PbCO_{3} is more stable than ZnCO_{3} (or converse) with no reference to CaCO_{3} (1)
(b) hydroxides become more soluble down the group (1)
both lattice energy and hydration decrease (1) but lattice energy decreases more than hydration energy so enthalpy of solution become less endothermic (1)
[Total: 9]

2 (a)

	$\left[\mathrm{CH}_{3} \mathrm{CHO}^{-}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{CH}_{3} \mathrm{OH}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}^{\star}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$	$[$ acetal A] $/ \mathrm{mol} \mathrm{dm}^{-3}$	$\left[\mathrm{H}_{2} \mathrm{O}\right]$ $/ \mathrm{mol} \mathrm{dm}^{-3}$
at start	0.20	0.10	0.05	0.00	0.00
atequilibrium	$(0.20-\mathbf{x})$	$\mathbf{(0 . 1 0 - \mathbf { 2 x })}$	$\mathbf{0 . 0 5}$	\mathbf{x}	\mathbf{x}
atequilibrium	$\mathbf{0 . 1 7 5}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 5}$	0.025	$\mathbf{0 . 0 2 5}$

(i) 3 values in second row $3 \times(1)$
(ii) 4 values in third row $4 \times(1)$
(iii) $K_{\mathrm{c}}=\left\{[\right.$ acetal A$\left.]\left[\mathrm{H}_{2} \mathrm{O}\right]\right\} /\left\{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]^{2}\right\}$ (1) units $=\mathrm{mol}^{-1} \mathrm{dm}^{3}$ (1)
(iv) $K_{\mathrm{c}}=0.025^{2} /\left(0.175 \times 0.05^{2}\right)=1.4(3)\left(\mathrm{mol}^{-1} \mathrm{dm}^{3}\right)$
(b) (i) Order w.r.t $\left[\mathrm{CH}_{3} \mathrm{CHO}\right]=1$

Order w.r.t. $\left[\mathrm{CH}_{3} \mathrm{OH}\right]=1$
Order w.r.t $\left[\mathrm{H}^{+}\right]=1$
(ii) rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3} \mathrm{OH}\right]\left[\mathrm{H}^{+}\right]$
(iii) units $=\mathrm{mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$
(iv) rate will be $2 \times 4=8$ times as fast as reaction 1 (relative rate $=8$)

3 (a) $\mathrm{Fe} \quad[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{6}$
$\mathrm{Fe}^{3+} \quad[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
(b) (i)

Marks are for 5 degenerate orbitals (1) and 3:2 split (1)
(ii) colour due to the absorption of visible light (NOT emitted light) (1)
$\mathrm{E}=\mathrm{hf}$ or photon's energy $=\mathrm{E}$ in above diagram (1)
electron promoted from lower to higher orbital (1)
(iii) size of $\Delta \mathrm{E}$ depends on the ligand (1) as $\Delta \mathrm{E}$ changes, so does f in $\mathrm{E}=\mathrm{hf}(1)$
(c) (i) O.N. (carbon) $=+3$
(ii) O.N. $=+3$
(iii)

(iv) $\underline{\underline{\mathbf{2}}} \mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) 3 \rightarrow \underline{\mathbf{3}} \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\underline{\mathbf{2}} \mathrm{FeC}_{2} \mathrm{O}_{4}+\underline{\mathbf{2}} \mathrm{CO}_{2}$ or $\mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3} \rightarrow \underline{\mathbf{3 / 2}} \mathrm{~K}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{FeC}_{2} \mathrm{O}_{4}+\mathrm{CO}_{2}$

4 (a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}^{+}+$heat under reflux
(b) nucleophilic substitution
(c) heat under reflux + aqueous HCl
(d) alkene
(e) amide or ester
(f)
(f)

alternative structure for capsaicin

ecf $5 \times$ [1]

5 (a) (i) $\mathrm{C}=\mathrm{C}$ double bonds / alkenes
(ii) -OH groups / accept alcohols or acids
(iii) $\mathrm{CH}_{3} \mathrm{CO}-$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-$ groups
(iv) carbonyl, $>\mathrm{C}=0$, groups / accept aldehydes and ketones
(b)

(c) isomers of \mathbf{G}

cis

correct structure (excluding stereochemistry) (1)
cis and trans drawn correctly (1)
type of isomerism is cis-trans or geometrical isomerism (1)

6 (a) (i) A is $\mathrm{Cl}_{2} /$ chlorine (1)
B is NaCl or HCl or Cl^{-}[or words] (1)
C is salt bridge or $\mathrm{KCl} / \mathrm{KNO}_{3}$ (1)
D is platinum/Pt (1)
E is $\mathrm{Fe}^{2+}+\mathrm{Fe}^{3+}$ or mixture of $\mathrm{Fe}(\mathrm{II})+\mathrm{Fe}$ (III) salts (1)
(ii) $\mathrm{E}^{\ominus}=\mathrm{E}^{\ominus} \mathrm{R}_{\mathrm{R}}-\mathrm{E}_{\mathrm{L}}=0.77-1.36=(-) \mathbf{0 . 5 9}(\mathrm{V})$ (ignore sign) (1)
(since R.H. electrode is negative electrons flow (from right) to left or to the chlorine electrode or anticlockwise or from (beaker) E to (beaker) B (1)
(b) (i) $\Delta H^{\ominus}=3 \times(-167.2)+(-48.5)-(-399.5)(1)$

$$
\begin{equation*}
=-150.6 \text { or } 151\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \tag{2}
\end{equation*}
$$

correct answer only (2)
(ii) $2 \mathrm{Fe}^{3+}+\mathrm{Cu} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+}$ (1)
(or molecular: $2 \mathrm{FeCl} l_{3}+\mathrm{Cu} \rightarrow 2 \mathrm{FeCl}_{2}+\mathrm{CuCl}_{2}$)
$\mathrm{E}^{\ominus}=0.77-0.34=(+) 0.43(\mathrm{~V})(1)$
(no mark for -0.43 V)

7 (a)

process	sign of $\Delta \boldsymbol{S}$
$\mathrm{NaBr}(\mathrm{s})+(\mathrm{aq}) \rightarrow \mathrm{NaBr}(\mathrm{aq})$	+
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	+
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-
$\mathrm{CoCl}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$	-
$\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$	

2 correct, (1) mark
4 correct, (2) marks
(b) $\Delta S^{\ominus}=(214 \times 2)+(70 \times 3)-(161 \times 1)-(205 \times 3)$
$=-138 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(c) As temperature increases $T \Delta S$ is more negative or $-T \Delta S$ increases (1)

At high temperature $T \Delta S$ is more negative than ΔH (so ΔG is positive) (1)
(d) the reaction is feasible, ΔG is negative so
$T>\Delta H / T \Delta S$ or use of $T=\Delta H / T \Delta S$
$\mathrm{T}=178000 / 159$ (1)
$\mathrm{T}=1119.5 \mathrm{~K}$ units required or $\mathrm{T}>1120 \mathrm{~K}$ (1)

8 (a) X is
 allow $-\mathrm{N}_{2}$ - and - ONa
(b) reaction I: $\underline{\mathrm{C}} l_{2}+\operatorname{light}(1)(\underline{\text { not }} \mathrm{aq})$
reaction II: $\mathrm{Br}_{2}+\mathrm{AlBr}_{3}$ or Fe or FeBr_{3} (1) (not aq)
reaction III: NaOH , heat in ethanol (1) (allow aqueous EtOH)
reaction IV: $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (1) conc and $60^{\circ} \mathrm{C}$ (1)
reaction $\mathrm{V}: \mathrm{KMnO}_{4}+\mathrm{H}^{+} / \mathrm{OH}^{-}+$heat (1)
reaction VI: $\mathrm{Sn}+\mathrm{HCl}(1)$
reaction VII: $\mathrm{HNO}_{2}+\mathrm{HCl}<10^{\circ} \mathrm{C}$ (1)

9 (a) time for a component between injection and travelling to the detector
(b) (i) No. of carbon atoms present in J is $\frac{100 \times 1.3}{1.1 \times 23.5}=5$ carbons (must show working)
(ii) 4 different carbon environments (1)
$\delta 210$ is C = O carbon (1)
$\delta 15-45$ are alkyl carbons/C-C (1)
(iii) Y is

(1)

Isomer A would show 5 absorptions/peaks (1)
Isomer B would only show 3 absorptions/peaks (1)
[Total: 8]

10 (a) (many) monomers add together to form a polymer and small molecule (such as $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$)
(b)

bonding type	secondary structure	tertiary structure
hydrogen bonding	\checkmark	\checkmark
ionic bonding		\checkmark
van der Waals'		\checkmark

2 correct [1]; all correct [2]
(c) (i) pH of the buffer solution
(ii)

amino acid	Identity of amino acid (any one of)
A	Asp, Glu
B	Gly, Val, Phe, Ala
C	Lys

2 correct [1]; 3 correct [2]

