CHEMISTRY

MAXIMUM MARK: 30

	Question	Expected Answer	Additional Guidance	Mark
	1 (a) (i)	The temperature The surface area of the marble chips	Allow size of the marble chips	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(ii)	Measure the temperature of the hydrochloric acid AND Use the same mass and number of marble chips		1
	(iii)	The mass of the carbon dioxide	Allow loss in mass of the flask containing the reactants	1
	(b)	The diagram shows a container for the marble chips and hydrochloric acid connected to a gas syringe. All connections are shown such that the apparatus would work without leakage of carbon dioxide. The apparatus is fully labelled.	Allow collection of carbon dioxide over water Bungs/corks must be shown where required	1 1 1
	(c)	The volume of hydrochloric acid The concentration of the hydrochloric acid The mass of marble chips The time taken to collect $100 \mathrm{~cm}^{3}$ of carbon dioxide 4 correct 2 marks 3 correct 1 mark	Ignore mention of temperature or size of marble chips Allow final time or time to end of experiment	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(d)	Stated volume of $2.00 \mathrm{moldm}^{-3}$ hydrochloric acid is taken using a pipette/burette and placed in a volumetric flask Water added to the volumetric flask to make up to the mark AND solution then shaken/flask is inverted several times The volume of the volumetric flask is four times the volume of hydrochloric acid taken OR the volume of water added is three times the volume of hydrochloric acid taken	Do not allow the use of a measuring cylinder Volumetric flask must be a conventional size (i.e. allow $25,50,100,150,200,250,500,1000$ or $2000 \mathrm{~cm}^{3}$)	1 1 1
	(e)	The concentration of the acid must be such that it is the acid and not the marble chips which is controlling the rate of reaction	Allow any wording of the answer which shows an understanding of this point	1

	Question	Expected Answer	Additional Guidance	Mark
	(c)	The anomalous point chosen must be more than two small squares distant from the line of best fit. If the point identified indicates too much CO_{2} produced then this could be because the cotton wool plug was not weighed at the end OR If the point identified indicates too little CO_{2} produced then this could be that the solution was not saturated with CO_{2} at the start/ CO_{2} not left long enough to diffuse		1
	(d)	Identifies less reliability with lower masses of $\mathrm{X}_{2} \mathrm{CO}_{3}$ because percentage errors will be higher	Allow any wording of the answer which shows an understanding of this point	1
	(e) (i)	Marks on the graph and gives correct co-ordinates for two points which lie on the line of best fit Calculates the gradient correctly using the two points	No mark should be awarded if units are given for the gradient	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(ii)	Explains that the gradient is the mass of CO_{2} divided by the mass of $\mathrm{X}_{2} \mathrm{CO}_{3}$ Calculates correctly Mr_{r} of $\mathrm{X}_{2} \mathrm{CO}_{3}$ as $44 /$ gradient		1 1
	(f) (i)	No change as the mass is unaffected by a change in temperature		1
	(ii)	Line would have a steeper gradient An equivalent mass of $\mathrm{Y}_{2} \mathrm{CO}_{3}$ produces more $\mathrm{CO}_{2} \mathrm{OR}$ an equivalent volume of CO_{2} is produced by a smaller mass of $\mathrm{Y}_{2} \mathrm{CO}_{3}$		1 1
	(g)	Use a titration of $\mathrm{X}_{2} \mathrm{CO}_{3}$ against HCl	Allow other named strong acid	1
	Qn2		Total	15

BLANK PAGE

