

Cambridge International Examinations
Cambridge International Advanced Subsidiary and Advanced Level

AS & A Level	Cambridge International Adva	niced Subsidiary and Advanced i	_evei	
CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
CHEMISTRY				9701/0
Paper 3 Adva	anced Practical Skills	For	Examinat	ion from 201
SPECIMEN P.	APER			
	nswer on the Question Paper. terials: As listed in the Confidential	Instructions		2 hour
READ THESE	E INSTRUCTIONS FIRST			
Write in dark to You may use a Do not use sta DO NOT WRITE Answer all que Electronic calculations.	culators may be used.	raphs. n fluid.	rovided.	
You may lose appropriate ur	e marks if you do not show your wants.	orking or if you do not use	Sess	sion
Use of a Data	Booklet is unnecessary.			
	alysis Notes are printed on pages 1 ble is printed on page 12.	I0 and 11.	Labor	ratory
The number of	the examination, fasten all your wor			
part question.			For Exami	iner's Use
			1	
			2	
			3	<u> </u>

This document consists of 12 printed pages.

1 Rates of reaction can be investigated by observing the volume of gas evolved in a reaction over time. In this experiment the reaction will be between calcium carbonate, CaCO₃, in the form of small marble chips, and dilute hydrochloric acid, HC*l*. The equation for the reaction is given below.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

FA 1 is approximately 1.0 g calcium carbonate, CaCO₃. **FA 2** is approximately 2 mol dm⁻³ hydrochloric acid, HC*l*.

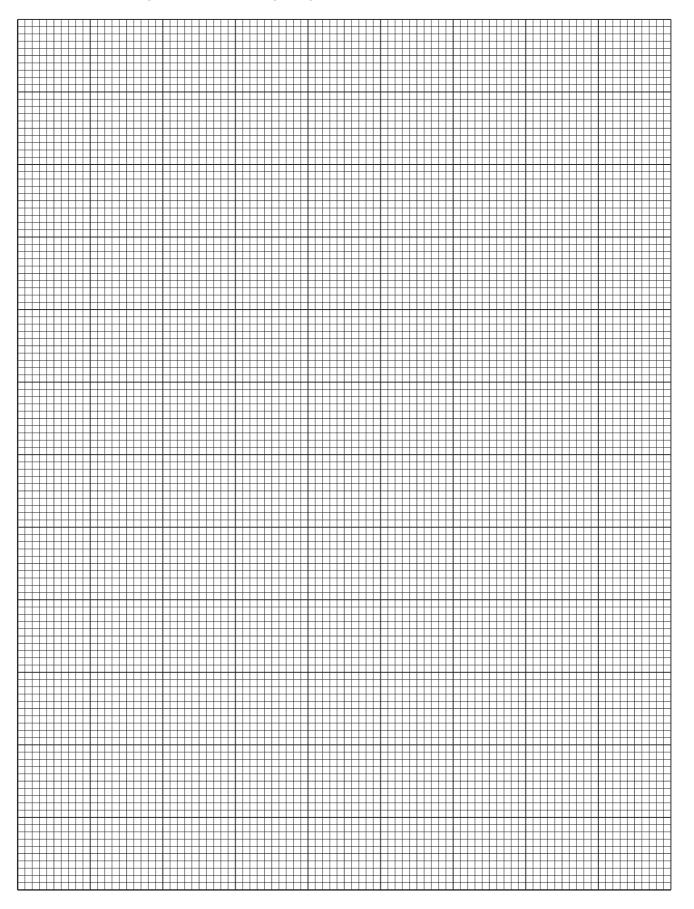
(a) Method

Read through the whole method before starting any practical work.

- Fill the trough with water to a depth of about 8 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it under the water in the trough.
- Remove the paper towel and clamp the inverted measuring cylinder so the open end is just above the base of the trough.
- Use the 25 cm³ measuring cylinder to transfer 15 cm³ of **FA 2** into the conical flask.
- Check that the bung with delivery tube fits tightly in the neck of the conical flask and place the other end of the delivery tube under and in to the inverted large measuring cylinder. Remove the bung from the neck of the flask.
- Weigh the container with FA 1 and record the mass in the space below.
- Tip all of **FA 1** into the conical flask, replace the bung immediately and start the stop clock as soon as possible. Swirl the flask to mix the contents.
- Record the volume of gas in the measuring cylinder every minute for 10 minutes in the table below. **Do not remove the bung.**
- Reweigh the empty container and record the mass and the mass of **FA 1** used in the space below.

Results

Mass


Gas volumes

time / minutes	gas volume / cm ³
1	
2	
3	
4	
5	

time / minutes	gas volume / cm ³						
6							
7							
8							
9							
10							

[3]

(b) (i) Plot a graph of volume of gas against time.

(ii)	Draw a line of best fit through the points. Circle or label any points you consider anomalous. [1]
(iii)	The rate of reaction at any point may be determined by calculating the gradient of the tangent to the curve at that point. Select a point on your graph, draw the tangent and calculate its gradient. Show your working.
	rate of reaction at the point selected =cm ³ minute ⁻¹ [2]
(iv)	What can be deduced about changes in the rate of reaction as the reaction progresses from the shape of the line of best fit? Explain fully how one factor causes this change in the rate.
	[3]
	student carrying out this experiment stated there were too many inaccuracies in the perimental procedure for numerical values of the rate of reaction to be valid.
ins	ggest and explain the effect of one inaccuracy which occurred in the method you were structed to carry out in (a) . Suggest how to improve the method to eliminate or reduce this accuracy.
ina	accuracy
im	provement
	[2]
	[Total: 13]

Question 2 begins on the next page.

2 The exact concentration of the hydrochloric acid used in **Question 1** may be found by titration using a solution of an alkali such as sodium hydroxide. You will dilute the acid and then titrate the diluted solution against sodium hydroxide of known concentration.

$$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$

FA 2 is approximately 2 mol dm⁻³ hydrochloric acid, HC*l* **FA 3** is 0.100 mol dm⁻³ sodium hydroxide, NaOH methyl orange indicator

(a) Method

(i) Dilution of the acid

- Fill the burette with undiluted hydrochloric acid, FA 2.
- Run between 9 and 12 cm³ of **FA 2** into the 250 cm³ volumetric (graduated) flask. Record your burette readings and the exact volume of **FA 2** used in the space below.

- Add distilled water to the volumetric flask to make the total volume 250 cm³.
- Stopper the flask and mix the contents thoroughly.
- This diluted hydrochloric acid is **FA 4**.

(ii) Titration

- Rinse the burette then fill it with **FA 4**.
- Pipette 25.0 cm³ of **FA 3** into a conical flask.
- Add about 3 drops of methyl orange indicator.
- Perform a rough titration and record your burette readings in the space below.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FA 4
 added in each accurate titration.

From your accurate titration results, obtain a suitable value to be used in your calculations Show clearly how you obtained this result.	(b)
25.0 cm ³ of FA 3 required cm ³ of FA 4. [1]	
Calculation	(c)
Show your working and appropriate significant figures in the final answer to each step of your calculations.	
(i) Calculate the number of moles of sodium hydroxide in 25.0 cm ³ of FA 3 .	
moles of NaOH = mo Hence calculate the number of moles of hydrochloric acid present in the volume of FA 4 in (b).	
moles of HCl in (b) = mol [1] (ii) Use your answer to (i) to calculate the number of moles of hydrochloric acid present in the 250 cm ³ volumetric flask.	
moles of HCl in the 250 cm³ volumetric flask =	(
concentration of hydrochloric acid in FA 2 = mol dm ⁻³ [1] (iv) Make sure your answers to (c)(i) to (c)(iii) are given to an appropriate number of significan figures. [1]	(

3 Qualitative analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test the full name or correct formula of the reagent must be given.

(a) You are provided with solution **FA 5**. **FA 5** is an aqueous mixture of two salts and contains two cations and two anions. Carry out the following tests and complete the table below.

test	observations
To a 1 cm depth of FA 5 in a test-tube, add aqueous sodium hydroxide.	
To a 1 cm depth of FA 5 in a test-tube, add aqueous ammonia.	
To a 1 cm depth of FA 5 in a test-tube, add a 2 cm depth of dilute sulfuric acid, shake, and leave for about 1 minute,	
then add aqueous potassium manganate(VII) drop by drop.	
To a 1 cm depth of FA 5 in a test-tube, add a 1 cm depth of aqueous potassium iodide,	
followed by a few drops of starch indicator.	

(b)	FA 5 contains either or both a sulfate and/or a chloride. Select reagents and use them to carry out further tests on FA 5 to positively identify which of these anions is present.
	reagents and
	Record your tests and all your observations in a suitable form in the space below.
	[4]
(c)	Use your observations in (a) and (b) to suggest the identities of as many ions present in FA 5 as possible. Give reasons for your deductions for one cation and one anion.
	possible cation(s)
	reasons(s)
	possible anion(s)
	reasons(s)
	[4]
	[Total: 13]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

:	reaction with								
ion	NaOH(aq)	NH ₃ (aq)							
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess							
ammonium, NH ₄ ⁺ (aq)	no ppt. ammonia produced on heating								
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.							
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.							
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess							
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution							
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess							
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess							
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess							
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess							
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess							

2 Reactions of anions

ion	reaction						
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids						
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))						
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))						
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))						
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil						
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)						
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)						
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated on warming with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)						

3 Tests for gases

gas	test and test result						
ammonia, NH ₃	turns damp red litmus paper blue						
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)						
chlorine, Cl ₂	bleaches damp litmus paper						
hydrogen, H ₂	"pops" with a lighted splint						
oxygen, O ₂	relights a glowing splint						
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless						

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

CLES																		
		1	Group															
2012	1	2											13	14	15	16	17	18
_								1										2
								Н										He
								hydrogen										helium
	Key						1.0				1						4.0	
	3	4		atomic number									5	6	7	8	9	10
	Li	Be		ato	atomic symbol B C N O F book sets a site of										Ne			
	lithium	beryllium		name												fluorine	neon 20.2	
	6.9 11	9.0 12		reiati	relative atomic mass								10.8 13	12.0 14	14.0 15	16.0 16	19.0 17	18
															P	S	Cl	-
	Na sodium	Mg magnesium											A <i>l</i> aluminium	Si silicon	phosphorus	Sulfur	chlorine	Ar argon
	23.0	24.3	3	4	5	6	7	8	9	10	11	12	27.0	28.1	31.0	32.1	35.5	39.9
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
9	potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
701/	39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
9701/03/SP/16	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
) D/	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
	85.5	87.6	88.9	91.2	92.9	95.9	_	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
	55	56	57–71 lanthanoids	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ва	lantilanoius	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
	caesium 132.9	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium —	astatine —	radon —
	87	88	89–103	176.5	105	106	100.2	108	192.2	110	111	112	204.4	114	209.0	116	_	_
	Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F <i>l</i>		Lv		
	Γ I francium	radium		rutherfordium		seaborgium	DII bohrium	ns hassium			roentgenium			Γ <i>t</i> flerovium		LV livermorium		
						–		—			–			—				
		I	I		I	I			I	I	I							
57 58 59 60 61 62 63 64 65									65	66	67	68	69	70	71			
	lanthanoi	ds	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	ian ian ian ion	40	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
			138.9	140.1	140.9	144.4	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.1	175.0	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
	actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium		
			_	232.0	231.0	238.0	_	-	_	_	_	_	_	_	_	_	_	