UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2007 question paper

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9700	04

Section A

- 1 (a) 1. killed / hunted, qualified; e.g. for meat / for fur / blood sport / takes human food / thought to be dangerous A poaching (unqualified)
 - 2. war;
 - 3. sale of live young;
 - 4. habitat destruction / AW;
 - 5. loss of / competition for food;
 - 6. AVP; e.g. disease

[3 max]

- **(b) (i)** 1. fewer animals need to be caught (for zoos);
 - 2. ref. becoming pregnant; e.g. IVF / finding a mate
 - 3. reintroduction into the wild;
 - 4. research easier with captive animals / AW;
 - 5. ref. increase in numbers;
 - 6. ante or postnatal care;

[3 max]

- (ii) 1. inbreeding / AW;
 - 2. gene pool too small;
 - 3. no fear of humans / difficulty in socialising with other gorillas;
 - 4. difficulty in, finding food / reproducing;
 - 5. ref. transfer of pathogens;
 - 6. ref. effects of captivity; e.g. stress

[2 max]

[Total: 8]

2

process	major products
glycolysis	ATP ; pyruvate ; reduced NAD ;
Krebs cycle	ATP; reduced NAD / reduced FAD; CO ₂ ;
oxidative phosphorylation	ATP ; water ; NAD / FAD ;

[8 max]

R NADP throughout

[Total: 8]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9700	04

3 (a) (i)

bacterial strain	А	В	
diameter (d) / mm	24	16 ;	
area / mm²	452 - 453	201 – 201.2 ;	A ecf
ratio of area A : area B	2.25 : 1	A 9:4	A ecf

[3]

- (ii) 1. penicillin kills more of strain A than strain B or C / AW;
 - 2. ref. different active or binding sites;
 - 3. A produces less penicillinase than B or C;
 - 4. C is resistant (to penicillin);
 - 5. C has mutation;
 - penicillin cannot bind to enzymes ;
 - 7. penicillin inactivated by C / C produces much penicillinase;
 - 8. AVP; e.g. B is evolving into a more resistant strain / variation in carriers across membrane [4 max]
- (iii) 1. antibiotic, is selective agent / provides selective pressure;
 - 2. resistant survive / susceptible die ;
 - 3. ref. reproduction;
 - 4. resistants pass on, mutation / allele; R gene
 - 5. ref. vertical transmission;
 - 6. increases frequency of allele in population;
 - 7. may pass advantageous mutation to other species / ref. plasmid transfer;
 - 8. ref. horizontal transmission;

[4 max]

accept reference to strains A, B and C in correct context for points 2, 3 and 4

- **(b)** 1. competitive inhibitors (of transpeptidase);
 - 2. binds to enzyme;
 - 3. blocks active site;
 - 4. crosslnks in peptidoglycan wall cannot form;
 - 5. weakens cell wall;
 - 6. lysis / cell bursts;
 - 7. ref. high internal pressure of bacterial cell;

[4 max]

[Total: 15]

- 4 (a) 1. norm concentration of blood glucose is 80 120 mg 100cm⁻³; (A within range)
 - 2. <u>ß cells</u> of, Islets of Langerhans / pancreas, detect increase;
 - 3. ref. K⁺ channels close / role of Ca ²⁺;
 - 4. secrete insulin;
 - 5. ref. glycogenesis;
 - 6. increased uptake of glucose (by cells);
 - 7. increased use of glucose in respiration / glucose converted to fat;
 - 8. ref. negative feedback / described;

[4 max]

Pag	ge 4	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2007	7 9700	04
	mal from DN, pro- ref. resi cut at s to g DN, sea	erse transcriptase tes, cDNA / single strand of DNA; (human) mRNA; A polymerase duces, second strand of DNA / double stranded D links nucleotides (in context of backbone formation semiconservative replication / ref. complementary riction enzymes DNA / cut plasmid; R cuts gene A cuts out ge pecific sites / at palindromic sites; live sticky ends; A blunt ends A ligase s nicks in sugar-phosphate backbone;	n) ; base pairing ; <i>[max 2</i>	
		ns_rDNA_; dding_phosphate group ;	[max 2	<i>]</i> [6 ma:
	,		•	/ . [Total: 10
				[Total: T
(a)	(i)	air spaces (between cells) / aerenchyma ; in mesophyll / cortex ; formed by cell death ;		[2 ma
((ii)	provides oxygen; for aerobic respiration / because conditions are a ref. diffusion; AVP; e.g. allows escape of ethene / buoyancy / a		[2 ma
(b)	(i)	internode length increases as water depth increases of figures; (2 days) 2 depths + 2 lengths is		Ī
((ii)	part of plant is (always) above water;		
		access to light; access to, air / oxygen / carbon dioxide; ref. pollination / flowering;		[2 ma
(i	iii)	ethene concentration increases up to 30 or 40 cm fluctuation / plateau between 30 or 40 cm to 60 cr comparison between when water level is constan	m water depth ;	reases ;
(c)	(i)	substance that affects growth / development;		I
	(ii)	 gibberellin causes increase in stem length; detail of mechanism; e.g. cell elongation gibberellin has greater effect with ethene prese more gibberellin could be secreted as water de gibberellin could remain constant but have great secreted; more gibberellin could be transported through; 	epth increases ; ater effect because more e	

[Total: 14]

[3 max]

7. AVP;

Pa	ge 5		Mark Sch			Syllabus	
		GCE	A/AS LEVEL – I	May/June 200)7	9700	04
(a)		ninal epitheliur afian follicle ;	<u>n</u> ;				1
(b)	(i) prim	nary oocyte ;					ı
	(ii) labe	l to primary o	ocyte on Fig. 6.2	•			I
	· <i>'</i>	<u>mitosis</u> meiosis ; bo	th required for m	nark			1
(c)	homolog on equal so segre in daugh AVP; e.g or crossing between genetic r leads to	tor (of spindle) gate randomly ter cells; g. occurs durin over / chiasm , chromatids of material on ma new combinat	I and paternal, co ; / / any combinati ng metaphase 1	on of materna fromosomes / nal chromoso R genes	l and pate non-siste mes swap	ernal chromos er <u>chromatids</u> o places / AW	somes can end u
(a)	ref. more	e than 2 pheno	phenotype / are htypes possible ; gote different fro		ozygote ;		I
(b)	Y chrom father widaughter	osome does n Il pass haemo r will be, a car	osome from fathe ot carry haemop philia allele to da rier / heterozygou ele to, her son / h	hilia allele ; lughter(s) ; us / X ^H X ^h ;	accept	t on diagram	[3 ma
(c)	(i)	(male)	$C^BC^BX^aX^a$;	x (fem	ale) C ^v	CWXAY ;	
	(gan	netes)	$C^B X^a$		$C_{M}X_{A}$	or $C^W Y$	•
		(male	C ^B C ^W X ^A X ^a ; e, blue, barred)	(fema		C ^W X ^a Y; on-barred)	
	if ma	ale XY and fer	ools but only with nale XX then ma sed but no key th	rk gametes ar	•	ng genotypes	to max 2

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9700	04

(ii) blue colour is heterozygous / CBCW;

test cross;

with non-barred female;

if <u>all</u> offspring <u>barred</u>, must be XAXA / homozygous;

if some offspring non-barred, must be XAXa / heterozygous;

[3 max]

[Total: 14]

- 8 (a) 1. human;
 - 2. applies selection pressure;
 - 3. for benefit of human;
 - 4. choose / breed, parents with suitable trait;
 - 5. named example (species and characteristic);
 - 6. select offspring;
 - 7. repeat over several generations;
 - 8. increased allele frequency;

[4 max]

(b) (i) 140 (%);;

2 marks for correct answer (14/10 x 100 = 1 mark)

[2]

(ii) genetic variation;

ref. polygenes;

environmental variation;

AVP; e.g. sampling / experimental, error

[2 max]

[Total: 8]

Section B

- 9 (a) 1. action potential / depolarisation, reaches presynaptic membrane;
 - 2. calcium (ion) channels open / presynaptic membrane becomes more permeable to Ca²⁺;
 - 3. Ca²⁺ flood into presynaptic neurone; **R** membrane
 - this causes vesicles of (neuro)transmitter to move towards presynaptic membrane;
 - 5. ref. acetylcholine / ACh;
 - vesicle fuses with presynaptic membrane / exocytosis ;
 - 7. ACh released into synaptic cleft;
 - ACh diffuses across (cleft);
 - 9. ACh binds to receptor (proteins) / AW;
 - 10. on postsynaptic membrane; R neurone
 - 11. proteins change shape / channels open ;
 - 12. sodium ions rush into postsynaptic neurone; R membrane
 - 13. postsynaptic membrane depolarised;
 - 14. action potential / nerve impulse;
 - 15. AVP; e.g. action of acetylcholinesterase

[9 max]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2007	9700	04

- **(b)** 16. ensure one-way transmission;
 - 17. receptor (proteins) only in postsynaptic, membrane / neurone; ora
 - 18. vesicles only in presynaptic neurone; ora
 - 19. ref. adaptation;
 - 20. increased range of actions;
 - 21. due to interconnection of many nerve pathways;
 - 22. ref. inhibitory synapses;
 - 23. involved in memory / learning;
 - 24. due to new synapses being formed;
 - 25. AVP; e.g. summation / discrimination

[6 max]

[Total:15]

- 10 (a) 1. biconvex disc;
 - 2. 3-10 µm diameter;
 - 3. double, membrane / envelope;
 - 4. internal membrane system;
 - 5. flattened or fluid-filled sacs / thylakoids;
 - 6. arranged in stacks / grana;
 - 7. hold pigments / named pigment;
 - 8. ref. clusters of pigments / AW;
 - (membrane of grana) hold ATP synthase;
 - 10. intergranal lamellae;
 - stroma / ground substance ;
 - 12. lipids / starch grains;
 - 13. contains enzymes of Calvin cycle;
 - 14. stroma contains ribosomes / DNA etc;
 - 15. AVP ; e.g. variation in shape between species

[9 max]

accept on labelled diagram

- **(b)** 16. closely packed -- to absorb more incident light / AW;
 - 17. palisade mesophyll near upper surface of leaf -- to maximize light interception;
 - 18. arranged at right angles to leaf surface -- to reduce number of light absorbing walls;
 - 19. cylindrical cells -- producing air spaces between cells;
 - 20. air spaces -- act as reservoir of carbon dioxide;
 - 21. large surface area -- for gas exchange;
 - 22. cell walls thin -- so short diffusion pathway;
 - 23. large vacuole -- pushes chloroplasts to edge of cell;
 - 24. chloroplasts on periphery -- to absorb light more efficiently;
 - 25. large number of chloroplasts -- to maximise light absorption;
 - 26. chloroplasts can move within cells -- towards light;
 - 27. chloroplasts can move away from high light intensity -- to avoid damage;
 - 28. AVP; [6 max]

accept chlorophyll for chloroplast for 23, 24 and 25 only

[Total: 15]