MARK SCHEME for the May/June 2008 question paper

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2				Syllabus	Paper				
				GCE A/AS LEVEL – May/June 2008	9700	04				
1	(a)	high	ier po	opulation (growth), higher (rate of) deforestation / ora ;						
		ref.	2 nai	med countries (or letters) and paired figs ;						
		ref.	Vietn	nam (not fitting trend);		[2 max]				
	(b)	(i)	1	ref. variety of, species / organisms / plants / animals ;						
			2	variation within species / AW ;						
			3	genetic diversity between species / AW ;		[2 max]				
		(ii)	ecor	nomic						
			1	(some, species / plants / animals may have) uses in th	e future ;					
			2	medical uses / example ;						
			3	resource material; e.g. wood for building / fibres for cl	othes					
			4	food (for humans) / agriculture ;						
			5	tourism / example ;						
			6	ref. maintain gene pool / genetic diversity ;						
			7	prevention of natural disasters ;						
			8	AVP ; e.g. ref. biological control (predators / parasites	reduce pest popu	ulations) [4 max]				
						[Total: 8]				
2	(a)) A – (pancreatic) duct ; A capillary								
-	(u)			of Langerhans / α and β cells ;		[2]				
		0-	13101	or Langemans / a and p cens ,		[ک]				
	(b)	α се	ells /	lin ;						
		into the blood / not into a duct ;								
	(c)	1	incre	eases permeability of membrane to glucose / increases	s alucose uptake	:				
	()	2		eases respiration of glucose ;	5	,				
		3		eases), conversion of glucose to glycogen / glycogene	esis :					
		4	•	eases) protein / fat, synthesis ;		[2 max]				
	(d)	1	it is i	identical to human insulin / ora ;						
		2	work	s better than non-human insulin / more rapid response	e;					
		3	no /	fewer, rejection problems / side effects / allergic reacti	ons;					
		4	ref. t	to ethical / moral / religious, issues ;						
		5	chea	aper to produce in large volume / unlimited availability	; R cheap to pr	oduce				
		6	less	risk of, transmitting disease / infection;						
		7	-	d for people who have developed intolerance / allergic <u>nimal</u> insulin ;	reactions / immu	ne responses [2 max]				

Page 3			Mark Scheme GCE A/AS LEVEL – May/June 2008	Syllabus 9700	Paper 04	
		(1)		· · · ·		
	(a)	(i)	1	anthers, versatile / loosely attached / attached at one		
			2	anthers / stamens / tassels / androecium, on long filan	-	(of flower);
			3	anthers / stamens / tassels / androecium, above leave	s;	
			4	stigmas / silks, hang out (of flower);		\
			5	stigmas, large surface area / hairy / feathery / branche	d, (to catch polle	en); [3 max
		(ii)	adv. 1	<i>antages</i> genetic variation / more diverse gene pool / increased	dene pool .	
			2	increased heterozygosity;	gene peer,	
			3	less likely that harmful recessive alleles will be expres	sed :	
			4	<u>hybrid vigour</u> / decreased inbreeding depression ;	,	
			5	ability to respond to changing conditions / named exar e.g. different environments / pests / disease / increase	•	pring [3 max
	(b)	(i)	1	cut <u>DNA</u> (into fragments) ;		
			2	by, restriction enzymes / named enzyme;		
			3	place on (agarose) gel ;		
			4	apply, current / p.d. / electricity ;		
			5	fragments travel towards anode ;		
			6	short fragments travel, further / faster, than long ones	; A mass of fra	agments
			7	visualise DNA with UV light / other means of visualisat	ion ;	
			8	AVP; e.g. Southern blotting / described		[4 max
		(ii)	1	change to, primary structure / secondary structure / shape ;	tertiary structure	/ folding / 3D
			2	protein / enzyme, cannot carry out its normal function		
			3	(could be an enzyme) that is essential for a metabolic	pathway ;	
			4	(could) control the expression of another gene / series	of genes;	[2 max
	((iii)	1	(only) one base / base pair / triplet, needs to chamaize);	ange (for teosin	te to become
			2	idea that this could occur in a natural population of teo	sinte / mutation	;
			3	variant, looks different / easy to spot ;		
			4	early farmers could have selected it to breed from;		
			5	no need for complex breeding programme;		[3 max
						[Total: 15

Page 4			ŀ	Mark Scheme	Syllabus	Paper					
		U		GCE A/AS LEVEL – May/June 2008	9700	04					
4	(a)	1	depo A in								
		2	in pr	in presynaptic <u>membrane</u> ;							
		3	calc	calcium ions enter, synaptic knob / through presynaptic membrane;							
		4	vesi	vesicles of, acetylcholine / neurotransmitter;							
		5	fuse	with presynaptic membrane ;							
		6	emp	ty contents into synaptic cleft / exocytosis ;		[3 max]					
	(b)	(i)	1	fluorescence, more / higher, in sperm from wild type n	nice / ora ;						
			2	comparative figures ; e.g. 170 v 10 and 400 v 10							
			3	mutant sperm do not have P / ora ;							
			4	so cannot take up calcium ions / ora ;		[3 max]					
		(ii)	1	an heads ;							
			2	more P in flagellum than head ;							
			3	flagella take up more calcium ions ;							
			4	flagellum has larger surface area / ora ;							
			5	no difference in heads and flagella of mutant mice spe	erm since no P ;	[3 max]					
	(c)	(i)	fertil	isation, in glass / in a dish ; R "test tube baby" unex	plained						
			outs	ide the reproductive tract / outside the body;		[2]					
		(ii)	with								
				few / no, mutant sperm penetrate zona pellucida / ora	;						
				lack of calcium ions / ora ;							
			3	no / less, vigorous movement (of flagellum) / ora ;							
				out ZP							
				mutant sperm can penetrate oocytes (without ZP);							
				differences in penetration less significant between wild							
				flagellum movement not needed for penetration (of oo							
				AVP ; e.g. smaller % success of wild-type sperm with with wild with ZP because, lack of binding site / damaged		ZP compared [4 max]					

[Total: 15]

	Pa	ge 5					Paper
				GCE A/AS	LEVEL – May/June 2008	9700	04
5	(a)	1	bact	erium obtains energ	ду;		
	. ,	2		ynthesis of material			
		3	for, g	growth / division;			
		4	does	s not need to use ca	arbon compounds for energy ; A	named carbon co	ompound [2 max]
	(b)	1	take	s up large area ;			
		2	unsi	ghtly;			
		3	requ	ires, lot of water / co	ontinuous water supply;		
		4	cont	amination of water /	/ pollution due to acid ;		
		5	Cu /	Fe, toxic to plants ;			[2 max]
	(c)	<i>bio</i> 1		ing (accept ora for n evel technology / no	<i>nining)</i> o sophisticated machinery / require	es less maintenar	nce;
		2	low e	energy consumptior	n / less fossil fuels used ;		
		3	few	safety hazards / saf	er; R no hazards		
		4	orga	nism easy to, obtair	n / culture ;		
		5	self	replicating;			
		6	wast	te less hazardous ;			
		7	disp	osal of waste, costs	less / is easier ;		
		8	ref. I	ow grade ores / scr	ap iron ;		
		9	less	workers needed;			
		10	ref. ι	use in situ ;			[4 max]
							[Total:8]
6	(a)	<i>alle</i> (dif) form of a gene;	A variety / version ignore refs to locus / mutation		[1]
		alle		nich does not have	e its effect in heterozygote / allele type if dominant allele is absent ;	e which (only) ha	as its effect in [1]
	(b)	ger	ne / al	lele, on X chromoso	ome / sex linkage ;		
		ferr	nale, r	needs 2 RGC <u>alleles</u>	<u>s</u> / homozygous recessive / can be	heterozygous;	
		ma	le nee	eds 1 RGC <u>allele</u> ;			[2 max]
	(b)	ger ferr	ne / al nale, r	lele, on X chromoso needs 2 RGC <u>alleles</u>	ome / sex linkage ;	e heterozygou	s;

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9700	04

(c) $1 - X^{R}X^{r} / Rr$;

 $4 - X^{R}Y / R / R^{\circ} / R$ -;

 $6 - X^{r}Y / r / r^{\circ} / r$ -;

$$7 - X^{R}X^{r} / Rr;$$

if X and Y not used then mark to max 3

[Total:8]

[4]

7 (a) (i) ref. wavelength

- 1 chlorophyll **a** peaks at <u>430</u>nm **and** chlorophyll **b** peaks at <u>450</u>nm ;
- 2 chlorophyll **a** peaks at <u>660</u>nm **and** chlorophyll **b** peaks at 635–640nm ;
- 3 ref. linking 400–500nm with blue light / ref. linking 600–700nm with red light ;
- 4 (both have) little absorption, between 500–600nm / in green light;
 A little absorption, chlorophyll a 450–600 and chlorophyll b 500–600;
- ref. light absorption
- 5 (both) peaks in blue light are higher than peaks in red light;
- 6 chlorophyll **b** higher than chlorophyll **a** in the blue end / chlorophyll **a** higher than chlorophyll **b** in the red end / AW ; **A** converse
- 7 comparative figures for light absorption to illustrate points 5 or 6; [3 max]

ignore units

- (ii) 1 absorbed light used for photosynthesis;
 - 2 higher rate of photosynthesis in red and blue light;
 - 3 action peak(s) / high rate of photosynthesis, correspond to absorption peak(s) ;
 - 4 blue / shorter wavelength, light has more energy / ora;
 - 5 not an exact match between absorption and action spectra (in middle region);
 - 6 role of carotenoids / accessory pigments, (in middle region); [3 max]
- (iii) they contain chlorophyll;

green / blue green / yellow green, light reflected ; [2]

(b) W – label line to stroma;

Y – label line to, granum / intergranal membranes; [2]

Pa	ge 7	,		Mark Scheme	Syllabus	Paper
			GCE A	/AS LEVEL – May/June 2008	9700	04
(c)	1	light	not limiting;			
	2	muc	h, ATP / reduce	ed <u>NADP</u> , available ;		
	3	CO_2	is the limiting f	actor ;		
	4	beca	ause low conce	ntration CO_2 (in atmosphere);		
	5	more	e CO ₂ combine	s with RuBP;		
	6	ref. r	rubisco ;			
	7	Calv	in cycle / light i	ndependent stage ;		
	8	GP t	oTP;			
	9		<u>e</u> hexose produ			
	10	ref. f	ate of hexose ;			[5 max]
						[Total:15]
8 (a)	(i)	sam	e, mean / mode	e;		
		narro	ower (5–35) ;	ignore height, curve should be symm	netrical	[2]
	(ii)	stabi	ilising ;			[1]
	. ,					
(b)	(i)	mea	n / mode, to lef	t of 20cm ;		
		narro	ower (0–35) ;	ignore height, curve should be symm	netrical	[2]
	(ii)	direc	ctional / evolutio	onary -		[1]
	. ,			,		[,]
	(iii)	fishir	-			
		•	lation ;			ro -
		AVP	, . ,			[2 max]
						[Total: 8]

Pa	ge 8			Mark Scheme		Syllabus	Paper
			GCE A	/AS LEVEL – May/June	2008	9700	04
(a)	1	reduced,	NAD / FAD);			
	2	passed to	ETC;				
	3	inner mer	nbrane / ci	ristae ;			
	4	hydrogen	released ((from reduced, NAD / FA	D); R H2		
	5	split into e	electrons a	nd protons ;			
	6	protons in	n matrix;				
	7	electrons	pass along	g, carriers / cytochromes	;		
	8	ref. redox	reactions	;			
	9	ref. energ	y gradient	;			
	10	energy re	leased;	R produced			
	11	protons (p	oumped) ir	to intermembrane space	;		
	12	proton gra	adient ;				
	13	protons p	ass throug	h (protein) channels ;			
	14	ATP syntl	hase / stall	ked particles ;			
	15	ATP prod	uced;				
	16	chemiosn	nosis ;				
	17	electron t	ransferred	to oxygen ;			
	18	addition o	of proton (to	o oxygen) to form water	(oxygen) red	uced to water;	[9 ma
				vrites about photosynthe 0 and 15 to 5 max	sis only allow		
(b)		<i>ytoplasm</i> NAD, bec	omes redu	iced / accepts H ;			
		during gly					
	in n	lants					
	21		converted	to ethanal ;			
	22	ethanal re	educed;				
	23	by reduce	ed NAD;				
	24	ethanol fo	ormed;				
		<i>nimals</i> pyruvate o	converted	to lactate ;			
	26	by reduce	ed NAD;				
	27	in, liver / r	muscles ;				
	28	allows gly	colysis to	continue;			[6 ma

[Total: 15]

	Ра	ge 9		Syllabus	Paper
			GCE A/AS LEVEL – May/June 200	9700	04
10	(a)	enc	locrine		
		1	hormones ;		
		2	chemical messengers; A chemicals that trans	sfer information	
		3	ductless glands / (released) into blood ;		
		4	target, organs / cells ;		
		5	ref. receptors on cell membranes ;		
		6	example of named hormone and effect;		
		ner 7	<i>vous</i> impulses / action potentials ; R electrical, sign	als / current	
		8	along, neurones / nerve fibres ; R nerves		
		9	synapse (with target) / neuromuscular junction;		
		10	ref. receptor / effector / sensory / motor, neurone	es;	
			erences – endocrine slow effect / ora ;		
		12	long lasting effect / ora;		
		13	widespread effect / ora ;		
		14	AVP ; e.g. extra detail of synapse		[8 max]
	(b)	15	IAA / plant growth regulator ;		
		16	synthesised in, growing tips / apical buds / meris	items ;	
		17	moves by diffusion ;		
		18	from cell to cell ;		
		19	also, mass flow / in phloem ;		
		20	stimulates cell elongation; R cell enlargement	t	
		21	inhibits, side / lateral, buds / growth; A inhibits	s branching	
		22	plant grows, upwards / taller; A stem elongate	es	
		23	IAA / auxin, not solely responsible ;		
		24	interaction between IAA and other plant growth r	egulators ;	
		25	AVP ; e.g. role of ABA and lateral bud inhibition		
		26	AVP ; e.g. cytokinins antagonistic to IAA / gibber	rellins enhance IAA	[7 max]
					[Total: 15]