MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9700 BIOLOGY

9700/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	43

Mark scheme abbreviations:

	separates	marking	nointe
,	separates	marking	points

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants excepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- mp marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** Alternative valid point (examples given as guidance)

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9700	43	
1	(a)	 pool dise char char incre decr decr nam nam 	Is drying up ; as, affected by the sea / more salty ; ase / parasite, (causing high death rate) ; nges to sand dunes ; e.g. by humans or natural causes ease in predators ; rease in food ; ned pollution ; e.g. acid rain affecting pH of pools ned human activity ; e.g. taking toads / road kill / food fo eased competition ;		[3 max]	
	(b)	616 or 6 allow on	17 ;; e mark for working if incorrect answer		[2]	
	(c)		of feeding on other organisms ; btain organic compounds ;		[2]	
		(ii) anin	nalia and fungi ;		[1]	
		or	nore interested in vertebrates tes, larger / more visible ;		[1]	
		Ventebra			[Total: 9]	
2	(a)	2. drop	utions of) alginate and enzyme mixed ; blets (of mixture) into calcium chloride (solution) ; roduce beads ;		[2 max]	
	(b)	 enzy allow 	of easier purification of product ; yme, can be reused / is not lost / has longer shelf life ; ws continuous culture ; aper ;		2 max	
		 idea com explanat (iner tertia less H box 	obilised papain more active / papain in solution less ac of difference above 30°C ; parative figs; e.g. values of activity for both at any or	ie temperature al	•	
			r r			
					[Total: 8]	

	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	43
heca ollicl	a / wall of follicle ; e cells / granulosa cells / corona radiata ;		[4]
nega o, hy dea ack o cervi	tive feedback ; ypothalamus / anterior pituitary ; of lack of <u>FSH</u> prevents maturation of follicle ; of <u>LH</u> prevents ovulation ; cal mucus, thick / hostile to sperm ;	/ LH ;	[4 max]
2. b 3. s 4. f	pecause no, transcription / translation / protein synthes sperm (head) has complementary shape to, ZP3 / rece ertilisation cannot occur ;		[3 max]
1. id 2. e r r h r k s . t	dea of giving unwanted side effects ; example ; <i>any one from</i> hausea nood swings high blood pressure isk of blood clots headaches veight gain ncreased risk of breast cancer o maintain natural hormone balance		
			[2 max]
		ody;	[2]
			[Total:15]
	prog prog pega o, hy dea ack () kervi hin u k k f 5. t k f 5. t k f 7 r r r k k k k k k k k k k k k k k k k	GCE AS/A LEVEL – May/June 2011 erminal epithelium ; heca / wall of follicle ; Dilicle cells / granulosa cells / corona radiata ; ocyte ; R ovum / egg progesterone / oestrogen), reduce the production of, FSH hegative feedback ; o, hypothalamus / anterior pituitary ; dea of lack of FSH prevents maturation of follicle ; ack of LH prevents ovulation ; xervical mucus, thick / hostile to sperm ; hin uterine lining prevents implantation ; blocking gene means no, ZP3 / receptor (for sperm) ; blocking gene means no, ZP3 / receptor (for sperm) ; blocking gene means no, ZP3 / receptor (for sperm) ; because no, transcription / translation / protein synthes sperm (head) has complementary shape to, ZP3 / receptor (for sperm) ; because sperm cannot bind (to oocyte) ; idea of giving unwanted side effects ; example ; any one from nausea mood swings high blood pressure risk of blood clots headaches weight gain increased risk of breast cancer 8. to maintain natural hormone balance or because pill may reduce subsequent fertility	GCE AS/A LEVEL – May/June 2011 9700 erminal epithelium ; neca / wall of follicle ; Dilicle cells / granulosa cells / corona radiata ; ocyte ; R ovum / egg progesterone / oestrogen), reduce the production of, FSH / LH ; negative feedback ; o, hypothalamus / anterior pituitary ; dea of lack of FSH prevents maturation of follicle ; ack of LH prevents ovulation ; nervical mucus, thick / hostile to sperm ; hin uterine lining prevents implantation ; . blocking gene means no, ZP3 / receptor (for sperm) ; . because no, transcription / translation / protein synthesis ; . sperm (head) has complementary shape to, ZP3 / receptor ; . fertilisation cannot occur ; . because sperm cannot bind (to oocyte) ; . i. idea of giving unwanted side effects ; . example ; any one from nausea mood swings high blood pressure risk of blood clots headaches weight gain increased risk of breast cancer a. to maintain natural hormone balance or because pill may reduce subsequent fertility ;

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	43

- 4 (a) (i) 1. hybrid vigour;
 - 2. increased heterozygosity / decreased homozygosity;
 - 3. increases gene pool / AW;
 - 4. harmful recessive alleles less likely to be expressed / reduces inbreeding depression ;
 - 5. increased yield;
 - 6. other named useful characteristic; e.g. disease resistance / more nutritious [3 max]
 - (ii) high cost (of seed) / farmers must buy new seed each year ; [1]
 - (b) (i) 1. stomata closed;
 - 2. to reduce transpiration / to avoid too much loss of water;
 - 3. so carbon dioxide cannot enter the leaf;
 - 4. so carbon dioxide concentration (in leaf / in chloroplast) becomes very low; [3 max]
 - (ii) 1. RuBP / rubisco / Calvin cycle, present in bundle sheath cells;
 - 2. which are tightly packed;
 - 3. which are not in contact with air (spaces);
 - 4. so are not exposed to oxygen;
 - 5. CO_2 / malate, delivered to bundle sheath cells ;
 - 6. from mesophyll (cells);
 - 7. (so) CO_2 concentration in bundle sheath cells always high; [4 max]
 - (c) (i) 1. CO_2 concentration (in bundle sheath cells) is always high; 2. CO₂ not limiting ; 3. another factor / light intensity / temperature, limiting; 4. no photorespiration; [2 max] (ii) 1. idea of change in temperature; 2. affects, light independent / light dependent, stage (of photosynthesis); or 3. idea of change in light intensity; [2]
 - 4. affects light dependent stage (of photosynthesis);

[Total: 15]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2011	9700	43
5	3 4	2. le 3. (r 4. le	igher yields / more crop survives ; ess need to use pesticides / crop pest-resistant ; educed pesticide use) may benefit other organisms in the ess risk of harm to humans, from spray drift / from pesticic e refs to cost		
	• • •		g Bt maize) reduces growth rate ; ompared to 0.7 / difference of 0.1 ;		[2]
	(c) 1 2 3	2. p	xperiments done in laboratory and not in the ecosystem / redicts what could happen if Bt toxin conc. increases in th nay not (normally) feed on pollen ;		[2 max]
	(d) 1 2 3 4	2. m 3. m	uch results likely to have a negative effect on public perce night reduce work for researchers in this area ; night reduce income of companies (producing GM crops) noreased use of pesticides ;		ops) / AW ; [1 max]
6	(a) ((i) d	ecarboxylation;		[1]
	(i	i) d	ehydrogenation / oxidation ;		[1]
	(ii	i) <u>s</u>	ubstrate level phosphorylation ;		[1]
	• •		educed NAD; A NADH etc. aloacetate;		[2]
	3 4 5 6 7 8 9	2. e 3. e 4. (f 5. ir 5. p 7. p 3. th 9. e	ydrogens split into protons and electrons ; lectrons pass along ETC ; nergy released used to pump protons ; rom matrix) to intermembrane space ; iner membrane impermeable to protons ; roton gradient forms ; rotons move down gradient ; nrough ATP, synthase / ATP synthetase ; R ATPase nzyme rotates ; TP produced ;		[5 max] [Total: 10]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	43

7 (a)

nuclear division	letter of stage
	В
	E
meiosis I	J
	н
	F
	D
	G
meiosis II	I
	С
	Α

E J H F all in meiosis I ;

EJHF in correct order;

GICA all in meiosis II;

GICA in correct order;

[4]

(b) 1. chiasma / crossing over;

- 2. between non-sister chromatids;
- 3. homologous chromosomes / bivalents ; in correct context of mp1 or mp8
- 4. in prophase I;
- 5. exchange of genetic material / AW;
- 6. linkage groups broken;
- 7. new combination of <u>alleles</u>;
- 8. <u>independent</u> assortment; **R** random assortment
- 9. in metaphase I;
- 10. detail of independent assortment ;
- 11. AVP ; e.g. possible mutation

[5 max] [Total: 9]

8 reproductive ; constant / stable / AW ; variation ; alleles ; gene ;

[5]

[Total: 5]

	Page 8			cheme: Teachers' versic A LEVEL – May/June 20		abus ′00	Paper 43
9	(a)	 in, b exa triplet co (sec corr 	utation ntaneous / randon pase sequence / n mple ; e.g. additio pde	n, change ; ucleotide sequence / mRt n / insertion / substitution DNA nucleotide) bases ; <u>RNA codon</u> ;	NA code / codon ;	'n	4 max
	(b)	parental	l phenotypes	man without HD	woman	with HD	
		•	l genotypes	tt	Т		
		gametes	S	all t	То	rt;	
		offspring	g genotypes	Tt	ti	t	
		offspring	g phenotypes	Huntington's disease	e norn	nal;	
		probabil	lity of first child hav	/ing D 50% / 0.50 / 1 in 2	2;		[3]
							[Total: 7]
10	(a)	 2. prim 3. at re 4. P70 5. acco 6. surr 7. <u>abs</u> 8. pas 9. (lightightightightightightightightightight	nary pigments / ch eaction centre ; 00 / PI, absorbs ligh essory pigments / round, primary pign orb light ; is <u>energy</u> to, primant absorbed results itted from, chloroph ses to electron, ac	ht at 700nm ; chlorophyll b / carotenoid ment / reaction centre / ch ry pigment / reaction cent s in) electron excited / AW hyll / primary pigment / rea ceptor / carrier ; ng, chain of electron carrie	s ; ilorophyll a ; re / chlorophyll a ; / ; action centre ;		[8 max]
	(b)	 16. rele 17. by, 18. e[−] re 19. e[−] (1 20. use 21. redu 22. to T 23. ATF 	d in <u>Calvin cycle</u> ; uces, GP / PGA ;	0 / PI ; ombine with NADP ; uction of GP) ;			[7 max] [Total: 15]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9700	43

- **11 (a)** accept ABA for abscisic acid
 - 1. stress hormone;
 - 2. plant secretes ABA in, high temperatures / dry conditions ;
 - 3. ABA binds to receptors ;
 - 4. on plasma membranes of guard cells ;
 - 5. inhibits proton pump / H^+ not pumped out of cell ;
 - 6. high H^+ conc / positive charge, inside cell ;
 - 7. K^+ diffuses out of cell ;
 - 8. water potential of cell increases; A increase in solute potential
 - 9. water moves out of cell by osmosis;
 - 10. volume of guard cells decreases;
 - 11. guard cells become flaccid;
 - 12. response very fast;
 - (b) 13. (barley) seed is, dormant / metabolically inactive ;
 - 14. seed absorbs water;
 - 15. embryo produces gibberellin;
 - 16. gibberellin stimulates aleurone layer;
 - 17. to produce amylase;
 - 18. amylase hydrolyses starch;
 - 19. in endosperm;
 - 20. to maltose / glucose ;
 - 21. embryo uses sugars for respiration;
 - 22. energy used for growth;
 - 23. gibberellins affect, gene / transcription of mRNA, coding for amylase; [7 max]

[Total: 15]

[8 max]