MARK SCHEME for the May/June 2013 series

9700 BIOLOGY

9700/41
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

Mark scheme abbreviations
; separates marking points
l alternative answers for the same point
$\mathbf{R} \quad$ reject
A accept (for answers correctly cued by the question, or by extra guidance)
AW alternative wording (where responses vary more than usual)
underline actual word given must be used by candidate (grammatical variants excepted)
$\max \quad$ indicates the maximum number of marks that can be given
ora or reverse argument
mp marking point (with relevant number)
ecf error carried forward
I ignore
AVP \quad Alternative valid point (examples given as guidance)

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

Question Expected Answers

1 (a) A - palisade, mesophyll/cell/tissue/layer;
B - guard cell;
C - (sub-stomatal) air space;
(b) (i) 1. through the stoma(ta);
2. by diffusion/description;
3. from the, atmosphere/air;
[max 2]
(ii) ribulose bisphosphate; I RuBP
(iii) reduces/donates hydrogen;

A $\mathrm{H} /$ hydrogen atoms $/ \mathrm{H}^{+}$AND e^{-}
R H ${ }^{+} / \mathrm{H}_{2}$
GP to TP ;
A PGA to PGAL

2 (a) male mosquitoes do not, bite humans/feed on blood transmit disease OR
only females, bite humans/feed on blood/transmit disease;
I GM male mosquitoes are not infected with the disease
(b) 1. easier to, identify/screen;
2. more economical/time saving/labour saving;
3. resistance gene(s) can be passed to other bacteria;
4. idea of antibiotics no longer effective

OR requiring development of new, antibiotics/treatments;

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(c) (i) production of tTA causes production of more tTA/AW;
(ii) 1. promoter, initiates transcription/switches on gene/causes gene expression/AW;
2. ref. binding of, RNA polymerase/transcription factors;
3. otherwise gene has to be inserted near an existing promoter;
4. this is difficult to do/this may disrupt expression of existing gene;
5. in eukaryotes precise position of promoter important;
(iii) 1. GM larvae do not die immediately;
2. so gives longer time for tTA, production/build up;
3. so tTA gets into environment (when GM larvae die) and kills non-GM larvae;
4. so (longer-lived larvae) compete with non-GM larvae (for, food/space);
\mathbf{R} ref. to larvae breeding
(d) (i) 1. chemical \mathbf{A} has, similar shape to tTA/complementary shape to binding site;
2. so chemical \mathbf{A} binds to, DNA/binding site, AND prevents tTA from binding;
3. chemical A, binds to/changes shape of, tTA

AND so prevents tTA binding to, DNA/binding site;
4. stops positive feedback/small quantity of tTA does not kill;
5. chemical A, binds to/changes shape of/breaks down, tTA, so no longer toxic;
(ii) 1. GM males, mated/bred;
\mathbf{R} with GM females
2. mosquitoes fed chemical \mathbf{A};
3. males, identified/separated;
4. ref. cloning;

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - May/June 2013	9700	41

(iii) 1. GM males die if they cannot get chemical \mathbf{A};
2. (if males mate), their offspring die;
3. only mate with, other A. aegypti/their own species;
[Total: 15]

3 (a) 1. nutrients added and product removed at a steady rate/AW;
2. (so) volume kept constant;
3. organism kept at, exponential/log, phase of growth;
(b) 1. (branched fungus tangles together in clumps so) too heavy for bubbles to, lift/stir
OR ref. to blocking;
2. difficult to, harvest/get desired texture;
3. mutant may be, harmful when eaten/toxic/allergenic;
4. mutant may produce, distasteful/coloured, substance;
5. mutant may be less productive;
6. mutant may have high concentration of RNA (which is difficult to lower);
7. approval for sale only applies to original strain;
(c) 864 kg ;

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

4 (a) (i) 1. ATP is made, in the electron transport chain/by oxidative phosphorylation;
2. oxygen is the final electron acceptor;
3. in the, inner membrane of the mitochondrion/cristae;
4. transfer of electron (between electron carriers) provides energy;
5. energy used to pump hydrogen ions (into intermembrane space);
6. creates proton gradient;
7. diffusion of hydrogen ions down their electrochemical gradient causes ATP to be synthesised;
8. ref. chemiosmosis/ATP synthase/stalked particles;
9. idea that if less oxygen (consumed/available) then fewer electrons transferred along the chain;
(ii) 1. at high temperatures, reactions/enzyme activity/metabolism, faster;
2. because, molecules/enzymes/substrates, have more kinetic energy;
3. more frequent collisions;
4. therefore, respiration/Krebs cycle/electron transport chain/production of reduced NAD, take place at a faster rate;
5. idea of increase in rate of anabolic reactions (requiring more ATP);
(b) (i) 1. oxygen consumed = oxygen inhaled - oxygen exhaled;
2. measure oxygen consumption at rest (x) and after exercise stops (y);
3. extra oxygen consumed/oxygen debt $=y-x$;
4. measure mass of lizard;
(ii) 1. less (oxygen debt)(for Varanus); ora
2. difference is greater at higher temperatures;
3. any two comparative figures at one temperature including units;

A $102.0 \mathrm{~cm}^{3} \mathrm{O}_{2} \mathrm{~kg}^{-1}$ at $30^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(iii) 1. Varanus uses, less anaerobic/more aerobic, respiration (when running);
2. more ATP produced per glucose molecule;
3. able to run for long time;
4. good chance of catching prey;
(iv) assume Varanus throughout

1. larger surface area, in lungs/for gas exchange;
2. more oxygen absorbed into blood (per unit time)/faster rate of gas exchange;
3. more oxygen supplied to muscles (so oxygen debt lower);

5 (a) (indicates that they) have undergone meiosis I;
so are, haploid/n ;
A 23 chromosomes
(b) (i) water moved out of cells;
down water potential gradient/into a more concentrated solution/into a lower water potential;
(by) osmosis;
(ii) (B) has, higher survival of oocytes after thawing/more successful fertilisations;
supporting figures;
these should compare columns 1 or 2 with column 3 or 5 for both \boldsymbol{A} and B
raw or manipulated data can be given
(iii) idea of deferring, fertilisation/implantation;
idea of preserving oocytes from a woman who may lose her fertility due to medical treatment;
idea of fewer rounds of, hormone treatment/oocyte retrieval;

Page 8	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(a) (i) \mathbf{A}-calcium ions; $\mathrm{A} \mathrm{Ca}^{2+} \quad \mathbf{R}$ calcium $/ \mathrm{Ca} / \mathrm{Ca}^{+}$

B - sodium ions ;
A Na ${ }^{+}$
R sodium/ Na
(ii) exocytosis;
(iii) depolarisation (of post-synaptic membrane)/action potential ;
(iv) 1. splits ACh;
2. into acetate and choline;
3. stops continuous depolarisation of postsynaptic membrane/AW;
4. choline recycled (into presynaptic neurone);
(b) binds to/blocks, dopamine receptors (on postsynaptic membrane);
prevents depolarization (of postsynaptic membrane);
reduces effect of dopamine;
\mathbf{R} reduces amount of dopamine
(c) ref 13 base deletion
frame shift/alters reading frame (after mutation);
(so) all amino acids different after mutation;
3-D shape/tertiary structure, of protein changed;
(whereas) 21 base-pair deletion, loses 7 amino acids/no frame shift;
(whereas) substitution, may change only one amino acid/may be silent;
(d) increased chances of, survival/breeding/mating;
provides a selective advantage;
allele passed on (to next generation);
allele increases in frequency over time;
natural selection;

Page 9	Mark Scheme	Syllabus	Paper
	GCE ASIA LEVEL - May/June 2013	9700	41

7 (a) sex-linked
(gene) carried on, one sex chromosome/X, and not on, the other/Y;
gene
section of DNA/sequence of nucleotides/sequence of bases, that codes for a (particular) polypeptide;
(b)

parental phenotypes	tortoiseshell female		black male	
parental genotypes	$X^{B} x^{0}$		$\mathbf{X}^{\mathbf{B}} \mathbf{Y}$;	
gametes	X^{B}	X°	X^{B}	Y;
offspring genotypes	$X^{B} \chi^{B}$	$\mathbf{X}^{\mathbf{B}} \mathbf{Y}$	$X^{B} x^{0}$	$\mathbf{X}^{\mathbf{O}} \mathbf{Y}$;
offspring phenotypes	black female	black male	tortoiseshel female	orange male;

(c) tortoiseshell is heterozygous;
males, heterogametic/only one \mathbf{X} chromosome;
(therefore) only one copy of gene/only black or orange allele present;

8 (a) 550(\%);;
allow one mark for $\frac{104-16}{16}(x$ 100)
(b) 1. limiting/density dependent, factors or described;
2. reached carrying capacity/AW;
3. competition/AW;
4. for, food/nesting sites/resources;
5. large population attracts predators;
6. large population spreads disease more easily;

Page 10	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(c) 1. not many to begin with;
2. are carnivorous;
3. prey numbers fell;
4. slower reproductive rate;
5. more likely to migrate (to other areas);

9 (a) 1. cultural/aesthetic / leisure, reasons;
2. moral/ethical, reasons ; e.g. right to exist/prevent extinction;
3. resource material ; e.g. wood (for building)/fibres for clothes/food for humans/(herbal) medicine
4. (eco)tourism;
5. economic benefits;
6. ref. resource / species, may have use in future/AW;
e.g. medical use
7. maintains, food webs / food chains;

A description
8. nutrient cycling;
9. protection against erosion;
10. climate stability;
11. maintains, (large) gene pool/genetic variation;
12. scientific research;

Page 11	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(b) advantages (max 5)
13. can monitor health of mother;
14. can monitor development of foetus;
15. storage of, sperm/eggs/gametes;
16. artificial insemination;
17. IVF;
18. ref. surrogate mothers;
19. international cooperation;
20. genetic records kept;
21. can prevent extinction/extend range of a species/used in restoring ecosystem;
disadvantages (max 5)
22. unnatural environment;
23. stress in captivity;
24. behavioural changes;
25. reproductive cycles disrupted;
26. may reject selected mate;
27. examples of problems with release ;;
28. difficulty in finding food
may not integrate into groups
more susceptible to disease
very little natural habitat left to release animals into

Page 12	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

10 (a) 1. in C3 plants at high temperature
rubisco combines with oxygen;
2. less rubisco to combine with CO_{2};
3. in C4 plant such as maize
idea of spatial separation of light-dependent stage from carbon fixation;
4. rubisco/RuBP, in bundle sheath cells;
5. kept away from, oxygen/air;
6. mesophyll cells, absorb CO_{2};
7. CO_{2} released to combine with RuBP;
8. avoid/reduce, photorespiration;
9. high optimum temperatures of enzymes involved;
10.Calvin cycle can continue;
11.AVP ; e.g. CO_{2} reacts with PEP

PEP carboxylase

Page 13	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - May/June 2013	9700	41

(b) 12. light energy absorbed by chlorophyll;

A photosystems/pigments
13. electron, excited/raised to higher energy level;
14. (electron) emitted by chlorophyll;

A photosystems/pigments
15. passes to electron, acceptor/carrier;
16. passes along, chain of electron carriers/ETC/Electron Transfer Chain;
17. energy released used to pump protons;

I ATP production here
18. into thylakoid space;
19. thylakoid membrane impermeable to protons;
20. proton gradient forms;
21. protons move down gradient;
22. through/using, ATP synthase/ATP synthetase;

R ATPase
23. enzyme rotates;
24. ATP produced from ADP and Pi;

