

BIOLOGY

9700/41 May/June 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9700	41

Mark scheme abbreviations:

•	separates	marking	nointe
,	separates	marking	points

I alternative answers for the same point

R reject

- A accept (for answers correctly cued by the question, or by extra guidance)
- **AW** alternative wording (where responses vary more than usual)
- **<u>underline</u>** actual word given must be used by candidate (grammatical variants accepted)
- max indicates the maximum number of marks that can be given
- ora or reverse argument
- **mp** marking point (with relevant number)
- ecf error carried forward
- I ignore
- **AVP** alternative valid point (examples given as guidance)

P	age 3		abus	Paper
		Cambridge International AS/A Level – May/June 2016 97	00	41
1	(a)	both have <u>ribose</u> (sugars) ; R ribulose ATP has 1, ribose/pentose/sugar, NAD has 2 ; I <i>ref. to</i> additional hexose both have, adenine/purine (base) ; I adenosine NAD has, nicotinamide/pyrimidine (base) ; ATP has 3 phosphates, NAD has 2 ;		[max 3]
	(b)	<pre>accept synthesise/produce/convert to, for 'make' for all mp make (named), protein/polypeptide/peptides; A protein synthesis/translatio make (named), disaccharide/oligosaccharide/polysaccharide/glycogen; R r mammalian examples such as starch or cellulose make (named), triglycerides/lipids/phospholipids/steroids/cholesterol; A glycogenesis make, nucleotide/polynucleotide/nucleic acid/DNA/RNA; A transcription/DNA replication AVP; e.g. named example of, polymerisation/condensation A phosphorylation example</pre>		[max 2]
	(c)	substrate-linked/substrate-level, phosphorylation; I condensation reaction		[1]
	(d)	hydrogen, carrier/acceptor ; A gets reduced or gains H/H ⁺ <u>and</u> electrons I donates R H ₂ /hydrogen molecules (acts as a) coenzyme ; A enables dehydrogenases to work <i>ref. to</i> glycolysis/respiration in anaerobic conditions ; A anaerobic respiration I aerobic	1	[max 2]
	(e)	 'more' needed once plus implied for second mp 1 more, C-H bonds/hydrogen(s) / reduced ; I C-C bonds R more hydrogen bonds R hydrocarbons accept produces/gives/results in for 'makes' in mp 2 and mp3 2 (makes) more reduced NAD ; 3 makes more ATP per, gram/molecule/mole/unit mass ; 		
		 A releases / results in / gives, more energy per, g / etc. more, aerobic respiration / electron transport chain (ETC) / oxidative phosphorylation / chemiosmosis ; A higher rate of <i>for 'more'</i> 	[[max 2] Total: 10]
2	(a)	at lowest value / in shortest supply ; I insufficient supply / not enough (the) one factor of several that affects rate ; A one factor of several prevents increase in rate		[2]
	(b)	to keep out unwanted CO ₂ (in air around leaves) ; A to stop CO ₂ increasing/entering (upper chamber) <i>ref. to</i> respiration of soil organisms ; A respiration of bacteria/fungi/seeds <i>ref. to</i> respiration of plant roots ;		[max 2]

Page	4	Mark Scheme	Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	41
(c)	(i)	I ref. to set B throughout I time references		
		at low(er) light intensity/light intensity up to a figure in range 6 – 7 a	au	
		1 <u>rate</u> increases as light intensity increases ;		
		2 light intensity is (main) limiting factor;		
		mp1 and mp 2 need to be in correct context		
		at high light intensity / light intensity above a figure in range 6 – 7 a	и	
		3 <u>rate</u> , levels off/reaches plateau/remains constant ;		
		A rate unaffected (by light intensity)		
		 another (named) factor / not light intensity, is limiting ; A CO₂ concentration / temperature 		
		mp3 and mp4 need to be in correct context		[max 3]
	(ii)	more CO_2 available in B /less CO_2 in A ;		
	()	A CO_2 concentration in B is double that of A		
		ref. to fixation/Calvin cycle/light independent reactions;		
		A description, e.g. CO_2 combines with RuBP		
		<u>CO₂ concentration</u> is limiting factor in set A ; A CO ₂ concentration is limiting at a higher light intensity in B		[max 2]
		A 002 concentration is inniting at a higher light intensity in D		
<i>(</i>)				
(d)	асс 1	cept ora throughout		
	1	D , adapted to high CO ₂ /can use more CO ₂ (per unit leaf area) ; A plants in D have, adjusted/accommodated, to high CO ₂		
	2	D have more, chloroplasts/chlorophyll ;		
	3	D have more, rubisco/RuBP;		
	4	D have more stomata ;		
	5 6	D have thinner leaves ; AVP ; e.g. <i>ref. to</i> <u>diffusion</u> of CO ₂		[max 4]
	•			[max i]
				[Total: 13]
3 (a)	(i)	<u>database(</u> s);		
5 (a)	(1)	computer (programs) / software ;		
		analysis of, data/biological information/sequences;		
		A compare, genes/genomes		[max 2]
	(ii)	1 identify/recognise, gene(s); A find where genes are		
	()	2 predict, primary structure/amino acid sequences, of proteins;		
		3 predict 3D structure of proteins ; A tertiary		
		4 identify/predict, functions of proteins (from 3D structure);		
		5 ref. to drug to, bind with/block activity of/disrupt structure of,	/ 0 n = 1 / m 0	
		 protein / enzyme ; A drug specific to protein I denature, protein / drug prevents, transcription / expression, (of gene) ; I gene edit 	•	[max 3]
				[max o]
/⊾\	/1)	chooper: A more economic(cl)		
(a)	(1)	cheaper ; A more economic(al) faster/can try many different drugs in a short period of time ; A time	e-saving	
		can try out changes to, model/drug structure, to see if more effective		
		no need for, laboratories/equipment; I uses less labour		
		(initially) no need for tests on, animals/humans ; A fewer ethical iss	sues	[max 3]

Ρ	age :	5	Mark Scheme	Syllabus	Paper
			Cambridge International AS/A Level – May/June 2016	9700	41
		(ii)	functionality/to test that drug, actually works/is effective ; A cannot assume predictions are correct I efficiency safety ; A <i>ref. to</i> clinical trials/side effects dosage ; A theoretical modelling will not give information on doses		[max 2] [Total: 10]
4	(a)	2 3 4 5 6	best/desirable, plants crossed ; A cross-pollinated R cross with othe (maize) species repeatedly/every generation ; detail of cross-pollination ; e.g. <i>ref. to</i> male tassels and female silks example of desirable characteristic ; A more kernels/big kernels/hig <i>ref. to</i> kernel colour/fast-growing/cold-tolerant hybridisation/two inbred (named) lines crossed/F1 hybrids formed ; A description, e.g. cross two, homozygous parents/parents from two bred lines gives more, vigorous/uniform, plants ; A heterosis	gh yield <i>\</i>	
		7	ref. to dwarf maize/mutant alleles for gibberellin (synthesis);		[max 4]
	(b)		<u>discontinuous</u> ; x 2 for mp2–6 one gene/single locus/monogenic, inheritance ; A monohybrid two alleles ; dominant and recessive ; 1:1 ratio purple to yellow ; A 50% purple, 50% yellow test cross/Aa × aa ;		[max 3]
	(c)	(i)	 as, Bt crops/area, increases the number of resistant, pests/species increases; A the more (the area of) Bt crops grown, the more (tresistant species figures quote; (2 years, area with units once) figures quote; (2 years, no. resistant pest species) mutation(s) (in pest species); chance/random/spontaneous (mutations); pests evolve resistance / natural selection for resistant pests; AVP; e.g. plateau in resistant species 		[max 4]
		(ii)	<i>social</i> increased yield/more food/cheaper food/AW ;		
			environmental decreased insecticide use/few hazards to humans/Bt only targets p species ; A no/less pesticide used R herbicide	pest	[2] [Total: 13]

	1		Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	41
(a)	de 2 3 4	detail of trapping ; e.g. Longworth/Sherman/live/small mammal detail of marking ; e.g. felt tip pen/clipping fur/not to have adverse detail of timing of second trapping ; e.g. not too soon or mixing will not too long after as migration may occur/after 24 hours/1 day (an of days up to two weeks)	not occur/	[max 4]
(b)	Ce (n nc	entrioles/centrosomes ; nay have) cilia/flagella/microvilli ; o cell wall ;		[max 2]
		 species/water voles A causes extinction alter food, chains/webs; due to predation; due to competition; due to spreading disease; may change habitat; e.g. create shade, change soil pH may be toxic/threaten human health; culling/hunting/trapping; contraceptive measures; biological control disease agent; I introduce new mink-eating predation 		[max 3] [max 1]
(a)	A no w	any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing beyos and black abdomen must be lower case (e, a) ith eyes and striped abdomen must be upper case (E, A)		Total: 10]
(b)	ga Fi cr A	ametes Ea ea × eA ea ; A each gamete written twic 2 genotypes Eeaa eeaa EeAa eeAa ; oss with, homozygous recessive/black no-eyes, fly ; double recessive/aaee (or own symbols)/organism showing recessive		[4] [1]
	(b) (c)	(b) gli (c) (i) (c) (i) (c) (i) (a) ke A (c) cr (c) cr (c) cr (c) cr	 A mark-and-recapture description (max 3) 2 detail of trapping ; e.g. Longworth / Sherman / live / small mammal 3 detail of marking ; e.g. felt tip pen / clipping fur / not to have adversee 4 detail of trapping ; e.g. chart tip pen / clipping fur / not to have adversee 4 detail of trapping ; e.g. felt tip pen / clipping fur / not to have adversee 4 detail of trapping ; e.g. felt tip pen / clipping fur / not to have adversee 4 detail of trapping ; e.g. felt tip pen / clipping fur / not to have adversee 4 detail of trapping ; e.g. for too soon or mixing will not too long after as migration may occur / after 24 hours / 1 day (an of days up to two weeks) 5 detail of calculation ; e.g. Lincoln Index / Petersen index or number marked time 1 × no. captured time 2 number of marked individuals recaptured time 2 A symbols in equation if key is given (b) glycogen ; centrioles / centrosomes ; (may have) cilia / flagella / microvilli ; no cell wall ; no, large / central / permanent, vacuole ; A no tonoplast (c) (i) 1 reduce, other organisms' abundance / biodiversity ; A endange species / water voles A causes extinction 2 alter food, chains / webs ; 3 due to predation ; 4 due to competition ; 5 due to spreading disease ; 6 may change habitat ; e.g. create shade, change soil pH 7 may be toxic / threaten human health ; (ii) culling / hunting / trapping ; contraceptive measures ; biological control disease agent ; I introduce new mink-eating pred I biological control alone (a) key to 4 chosen symbols ; A any two lettered pairs (e.g. E/e and A/a) identified I symbols for wing no eyes and black abdomen must be upper case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa × eA ea; A each gamete written twic F2 genotypes Eeaa eeaa EeAa eeAa; (b) cross with, homozygou	 A mark-and-recapture description (max 3) 2 detail of trapping; e.g. Longworth / Sherman / live / small mammal 3 detail of marking; e.g. felt tip pen / clipping fur / not to have adverse effects 4 detail of timing of second trapping; e.g. not too soon or mixing will not occur/ not too long after as migration may occur / after 24 hours / 1 day (any number of days up to two weeks) 5 detail of calculation; e.g. Lincoln Index / Petersen index or <u>number marked time 1 × no. captured time 2</u> number of marked individuals recaptured time 2 A symbols in equation if key is given (b) glycogen; centrioles/centrosomes; (may have) cilia / flagella / microvilli; no cell wall; no, large / central / permanent, vacuole; A no tonoplast (c) (i) 1 reduce, other organisms' abundance / biodiversity; A endanger, rare species / water voles A causes extinction 2 alter food, chains / webs; 3 due to predation; 4 due to competition; 5 due to spreading disease; 6 may change habitat; e.g. create shade, change soil pH 7 may be toxic / threaten human health; (ii) culling / hunting / trapping; contraceptive measures; biological control alone (a) key to 4 chosen symbols; A any two lettered pairs (e.g. E/e and A/a) identified 1 symbols for wing length <i>no eyes and black abdomen</i> must be lower case (e, a) with eyes and striped abdomen must be upper case (E, A) allow ecf to max 3 if error in symbols parents genotypes Eeaa × eeAa; gametes Ea ea × eA ea; A each gamete written twice F2 genotypes Eeaa eeaa EeAa eeAa; (b) cross with, homozygous recessive/black no-eyes, fly; A double recessive/aaee (or own symbols)/organism showing recessive

Pag	e 7			Mark Sche	me		Syllabus	Paper
		Camb	ridge Internat			/June 2016	9700	41
(4	c)	observed number (O)	expected number (E)	0 – E	(O – E) ²	<u>(O – E)²</u> E		
	_							
		86	83	3	9	0.11		
		87	83	4	16	0.19		
		81	83	-2	4	0.05		
		78	83	-5	25	0.30		
		332	332	;;	$\chi^2 = 0.65$	3		
	Δ	fractions in l	last column A	3 s.f. in last	column			[3]
((A A R R P A	(95% probation of the second	esis (no signific n significance of s not significar this deviation) of χ^2 test), less <u>value</u> ; <i>ecf reve</i>	erence is due cant differenc of results nt is over 0.05 than value a erse argume	to chance ce between C λ/χ^2 is less th at probability	D and E) an 7.82 ; 0.05	over 7.82	
	re	e <i>f. to</i> indepen	ident assortme	ent/AW;				[max 2]
								[Total: 10]
7 (a		-	constant internody conditions		ent;AW			[1]
(b) (i) ribosomes	s/rough endop	plasmic retic	ulum/RER;			[1]
	(i	i) exocytosi	s;					[1]
	(ii	adds trans A GL more gluc	ucose uptake/ sport proteins UT(4), protein cose respired/ onverted to gly	to cell (surfa s / channels increase in r	ce) membrar / carriers espiration rat	ne ; A in sarc	olemma	[max 3]

Page 8		Syllabus	Paper
	Cambridge International AS/A Level – May/June 2016	9700	41
(c)	 accept stimulates/stimulated, for activates/activated throughout (adrenaline) receptor shape change; G-proteins activated; A description of G protein releases (α) subur adenylyl cyclase activated; A adenyl(ate) cyclase cyclic AMP made; (cAMP is) second messenger; activates/phosphorylates, kinase; <i>ref. to</i> enzyme cascade/cascade of reactions; glycogenolysis/hydrolysis of glycogen, stimulated/AW; A break de glycogen AVP; gluconeogenesis/<i>ref. to</i> glucose transport proteins A description/glucose from, amino acids/lipids 		
	A GLUT(2) channels / carriers		[max 5]
			[Total: 11]
8 (a)	 A – dendrite(s); B – dendron/ (sensory) axon; C – cell body (of neurone) / soma/centron; D – axon (membrane); A terminal axon 		[4]
(b)	myelin insulates (axon) ; action potentials/depolarisation, only at nodes (of Ranvier) ; local circuits set up between nodes ; I local circuits at nodes action potentials/impulses, 'jump' from node to node or saltatory condu	iction ;	[max 2]
(c)	only, stimulus/depolarisation/receptor potential/potential difference, th reaches <u>threshold</u> produces an action potential ; ora A -50mV for threshold A generator for receptor	at	
	<i>idea that</i> the action potential is the same size no matter how strong the <i>ref. to</i> all-or-nothing (law) ; I all-and-nothing	stimulus ;	[max 2]
			[Total: 8]

Ρ	age 9	Mark Scheme	Syllabus	Paper
		Cambridge International AS/A Level – May/June 2016	9700	41
9		 accept proton/hydrogen ion/H⁺/H ion as equivalent throughout reduced, NAD/FAD; A NADH/NADH₂/NADH + H⁺ for reduced N passed to ETC; inner membrane/cristae; hydrogen released (from reduced, NAD/FAD); R H₂ split into electrons and protons; A released as electron and proto electrons pass along, carriers/cytochromes; A electrons pass alor proteins of, ETC / carrier chain energy released pumps protons into intermembrane space; proton gradient is set up; A concentration gradient of protons is c A full description protons diffuse, (back) through membrane/down gradient; A protons <u>diffuse</u> into matrix ATP synthase/stalked particles/protein channels; A ATP synthetase R ATPase (ATP produced from) ADP and (inorganic) phosphate; A context for the synthetase of the synthet	n ng reated	
		<i>idea of</i> oxygen as final electron acceptor ;addition of proton (to oxygen) to form water/ (oxygen) reduced to	water;	[max 8]
		 pyruvate formed by <u>glycolysis</u>; reduced NAD formed by <u>glycolysis</u>; pyruvate decarboxylated/AW; ethan<u>a</u>l produced; pyruvate decarboxylase; ethan<u>a</u>l is, hydrogen acceptor/reduced; A gains H or gains H⁺ ar from/by, reduced NAD; ethan<u>o</u>l formed; ethan<u>o</u>l formed; ethan<u>o</u>l/alcohol, dehydrogenase; not reversible reaction; NAD, regenerated/can now accept hydrogen atoms; A reduced NAD oxidised so glycolysis can continue; 	ı <u>d</u> e⁻	[max 7]
		12 so glycolysis can continue ;		[max /]
				[Total: 15]

Page 1		Syllabus	Paper
	Cambridge International AS/A Level – May/June 201	6 9700	41
D (a)	I ref. to nuclear envelope I names of stages		
5 (a)	meiosis l		
	1 chromosomes, condense/thicken/spiralise;		
	2 homologous chromosomes pair/bivalents form ;		
	3 crossing over/described ;		
	4 chiasma(ta);		
	 5 spindle fibres/microtubules, attach to/pull, centromeres/k once in mp5 or in meiosis II 	inetochores ; allow	
	6 bivalents line up on, equator/mid-line ; A pairs of homolog	ous chromosomes	
	7 independent assortment (of homologous pairs) / described assortment		
	8 chromosomes move to, two ends of cell/poles ; A (pairs of chromosomes separate	f) homologous	
	meiosis II		
	9 (individual) chromosomes/pairs of chromatids, line up on,	equator/mid-line;	
	10 at right angles to first equator ;		
	11 centromeres divide ;		
	12 chromatids separate ; A chromatids move to (opposite) po	les	
	13 ref. to haploid/chromosome number halved/one set of chr	romosomes;	
	A n for haploid		[max
(b)	I polypeptide throughout		
	 structural gene structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R if any of these are id as product of regulatory gene named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described idea that needed for, structure/function, of cell; 	none/ dentified	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R if any of these are id as product of regulatory gene named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described 	none/ dentified	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are ic</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are ic</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; <i>regulatory gene</i> (product) controls, gene expression/transcription; A prom 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are id</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; <i>regulatory gene</i> (product) controls, gene expression/transcription; A prom start/stop, gene expression or transcription 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R if any of these are id as product of regulatory gene named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described idea that needed for, structure/function, of cell; regulatory gene (product) controls, gene expression/transcription; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein; 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R if any of these are id as product of regulatory gene named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described idea that needed for, structure/function, of cell; regulatory gene (product) controls, gene expression/transcription ; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein ; binds to, promoter/operator/DNA response element ; 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are id</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; <i>regulatory gene</i> (product) controls, gene expression/transcription ; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein ; binds to, promoter/operator/DNA response element ; stops/allows, binding of <u>RNA polymerase</u>; 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are id</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; <i>regulatory gene</i> (product) controls, gene expression/transcription; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein; binds to, promoter/operator/DNA response element; stops/allows, binding of <u>RNA polymerase</u>; <i>ref. to</i> repressor/repressible; A silencer 	none <i>l</i> dentified ; R named	
	 structural protein/enzyme/rRNA; A any named protein of transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R if any of these are id as product of regulatory gene named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described idea that needed for, structure/function, of cell; regulatory gene (product) controls, gene expression/transcription; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein; binds to, promoter/operator/DNA response element; stops/allows, binding of <u>RNA polymerase</u>; <i>ref. to</i> repressor/repressible; A silencer <i>ref. to</i> inducer/inducible; A activator/enhancer 	none/ dentified ; R named note/prevent/	
	 structural protein/enzyme/rRNA; A any named protein or transcription factor (e.g. transporter/receptor/named horm immunoglobulin/haemoglobin/etc.) R <i>if any of these are id</i> <i>as product of regulatory gene</i> named, structural protein/other protein/enzyme, or tRNA protein if function wrongly described <i>idea that</i> needed for, structure/function, of cell; <i>regulatory gene</i> (product) controls, gene expression/transcription; A prom start/stop, gene expression or transcription (codes for) transcription factor/DNA-binding protein; binds to, promoter/operator/DNA response element; stops/allows, binding of <u>RNA polymerase</u>; <i>ref. to</i> repressor/repressible; A silencer 	none/ dentified ; R named note/prevent/	[max

[Total: 15]