As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper	Mark Scheme	Principal Examiner's Report
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9700 BIOLOGY

9700/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9700	02

1 (a) check column **A** and **B** for correct ref. to feature if not clear in first column e.g. gives description

feature	phagocyte (A)	plasma cell (B)
<u>rough</u> endoplasmic reticulum / <u>R</u> ER	small quantity / AW A few, less	large quantity / AW ; A many, more
allow ER if rough / RER stated in next column(s) R <u>S</u> ER		
ribosomes	few	many ;
	or	or
	ref. to free	not free / fixed
lysosomes	some / present / ✓	none / absent / x ;
vacuoles / vesicles / phagosomes	some / present / ✓	none / absent / x ;
nucleus	lobed / AW A irregular, not round	round / not lobed / not irregular / AW ;
	R curved, elongated, no definite shape	A spherical, circular
Golgi (body)	absent / x	present / ✓ ;
plasma / cell (surface), membrane	with, endocytotic / pinocytotic / phagocytic / exocytotic, vesicles / vacuoles	without, endocytotic / pinocytotic / phagocytic / exocytotic, vesicles / vacuoles
	A invaginations, infoldings	A no invaginations, no
	R indentations	infoldings
		R no indentations
mitochondria	less / few / 3	more / many / 7 ;

[3 max]

(b) (to nearest <u>whole</u> number) (x) 6000 ;; A 5900 – 6100 allow 1 mark for correct working if answer incorrect / not to whole number e.g. length of scale bar in mm × 1000, divide by actual size 60 mm × 1000 / 10 A 59 – 61 mm

[2]

Pa	ge 3	Mark Scheme	Syllabus	Paper
	J	GCE A/AS LEVEL – October/November 2008	9700	02
(c)	ingest mi R (form) A ref to ly enzym <u>digest</u>	o sites of infection ; ⁷ engulf / pseudopodia enveloping / phagocytosis of / en- crobes / pathogens / AW ; antigens, virus bhagocytic / endocytotic, vacuoles ; vesicles, phagosomes vsosomes ; es / named (hydrolytic) enzymes ; ⁷ <u>hydrolyse</u> , (bacteria / AW) ;	docytosis of, bacto	
	plasma product into, pl antiboor ref to, l specific or	n presentation / description ; e <i>cell</i> e / secrete / release / synthesise , antibodies ; A make asma / tissue fluid / lymph ; A blood lies are proteins ; RER / ribosomes ; city qualified e.g. of, antibodies / lymphocyte / plasma ce description e.g. each type of plasma cell produces one to body) packages antibodies / ref to formation of (Golgi) ve	ype of antibody ;	[3 max] [3 max]
(d)	less lik an ref to n (bacter (mycol ensure otherw	ia likely to be) resistant to (at least) one antibiotic (so us ely to be resistant to all / chance that bacteria will develo tibiotics used is very small ; nutation / change to DNA ; ia are) inside cells where protected from antibiotics ; pacteria) divide / grow, slowly ; s all bacteria killed / reduces below critical level ; ise, bacteria remain / reservoir of infection ; events development of antibiotic resistance ;		l [4 max] [Total: 15]
2 (a)	(soil to idea of apopla sympla through (becau ref to p	fs to mechanisms as neutral) root hair ; across, cortex / cortical cells (root) ; st / along cell walls ; st / via, cytoplasm / plasmodesmata ; n, endodermis / endodermal cells, by symplast pathway se of) suberin / Casparian strip ; assage cells ; st into the xylem ;	;	[4 max]
(b)	(fc lar <u>ce</u> mo	omata are open (to allow diffusion / gas exchange) ; r) entry of CO ₂ / release of O ₂ ; AW ge surface area inside leaf (for gas exchange) ; <u>I surfaces</u> / <u>walls</u> , in (palisade / spongy) <u>mesophyll</u> ; bist / damp / wet ; rrect ref to evaporation ; ter <u>vapour</u> , diffuses out / AW; A water <i>if linked to evapo</i>	ration	[3 max]

	GCE A/AS LEVEL – October/November 2008 adaptations (epidermal) hairs / trichomes ; R spikes, spines stomata in, pits / cavities / chambers ; R sunken stomata reduced air movement / still air ; holds water vapour / has high(er) humidity / AW ; A holds r (therefore) less steep, water potential / vapour pressur A qualified ref to diffusion shells between air inside leas thick / waxy, cuticle (on upper, epidermis / surface) ; multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ; stomata only on lower surface / no stomata on upper surface	re / diffusion, <u>gra</u> af and air in pits ;	
	<pre>(epidermal) hairs / trichomes ; R spikes, spines stomata in, pits / cavities / chambers ; R sunken stomata reduced air movement / still air ; holds water <u>vapour</u> / has high(er) humidity / AW ; A holds r (therefore) less steep, water potential / vapour pressur A qualified ref to diffusion shells between air inside lea <u>thick / waxy</u>, cuticle (on upper, epidermis / surface) ; multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ;</pre>	re / diffusion, <u>gra</u> af and air in pits ;	
	<pre>stomata in, pits / cavities / chambers ; R sunken stomata reduced air movement / still air ; holds water vapour / has high(er) humidity / AW ; A holds r (therefore) less steep, water potential / vapour pressur A qualified ref to diffusion shells between air inside lea <u>thick / waxy</u>, cuticle (on upper, epidermis / surface) ; multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ;</pre>	re / diffusion, <u>gra</u> af and air in pits ;	
	 holds water <u>vapour</u> / has high(er) humidity / AW ; A holds r (therefore) less steep, water potential / vapour pressur A qualified ref to diffusion shells between air inside leas <u>thick / waxy</u>, cuticle (on upper, epidermis / surface) ; multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ; 	re / diffusion, <u>gra</u> af and air in pits ;	
	multilayered, epidermis / hypodermis ; thick walled epidermal cells ; cuticle reflects sunlight ;	ce ;	[3 ma
:	0	се ;	[3 ma
(a) (i) 1			
(a) (i) 1			[Total: 1
	tertiary (structure); A 3°		
(ii) :	secondary (structure); A 2°, alpha / α , helix		
(b) activ	ve site;A catalytic site		
(c) (i)	mRNA CGU ; UGC/UGU GAA		
I	DNA GCA ACG/ACA CTT ;		
((many / several / more than one, triplet for each amino acid an e.g. from Table 3.1 ; <u>degenerate</u> code / description e.g. 64 possible triplets for 2 AVP ; e.g. may be an intron in this region, different nucleo (signal sequence)	20 amino acids ; /	
	 reject references to time e.g. rapid, slowly as the concentration of, enzyme / lysozyme, increases the bacteria surviving decreases / AW ; R if only 1 named steep, decline / decrease, 0 to 10 / first two concentrations A large percentage difference in <i>E.coli</i> surviving at 0 to less steep / more gradual, decline / decrease, from 10 to 1 decline / decrease, shallower / less steep from 0 – ,40 / 60 A small percentage difference in <i>S. aureus</i> surviving from decline / decrease, more significant / steeper / more abrup for <i>S. aureus</i> ; A large percentage difference <i>in S.aureu</i> up to 150 always more <i>S. aureus</i> than <i>E. coli</i> ; ora all bacteria survive with no lysozyme ; lysozyme is more effective, at killing / against, <i>E. coli</i> / AW all <i>E. coli</i> killed, at 150 pmol dm⁻³ (of lysozyme) / at highest comparative data quote ; <i>both axes, both curves</i> comparative data quote ; <i>penalise once for lack of units in</i> 	 a, for <i>E. coli</i>; b 10 / first two co 50 for <i>E. coli</i>; c 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> c m 0 – , 60 / 70 / 80, for <i>S. a</i> 	aureus ; 80 30, up to 150 n 60 / 70 / 8
	different, polysaccharides / peptidoglycans, in cell walls ;		[4 ma

	Pa	ge 5									Ма	ark	Sc	he	me)						Sv	/lla	bus		F	Par	ber
	-	J			G	C	ΕA	/AS	S LI								vem	ber	[.] 20	80		-	970				0	
			S. au ref to ref to S. au AVP	o s o s ure	sha sha e <i>u</i> s	ipe ipe s h	e of e of as	act , pc a c	tive blys aps	e site acc sule	:e; cha e/c	arid ora	le / ; /	pe r A pi	ptio rot	dogi ecti	lyca	n (to	o fit	•	•	•	-		in c	ell wa	[2 max
																										[]	Γο	al: 14
4	(a)	blo	od pa A or A sy	ne	C	/cl	e/	one	e cir	rcul	latio	on	R c	carc	dia	ссу	/cle		•		circu	it of	f the	e bc	ody ;			[1
	(b)	ma	nstanc intains to <u>mo</u> A thi	s t re	olo , e	od las	pro stin	ess / co	ure	;				oth)	m	usc	le ;										[2 max
	(c)	bloo any vas	ocons contr od, div suita odilat od rec	ro ve ıbl	l / i rte e e n /	rec d / e.g re	luc ′ sh . ; lax	e, b iunt divo / di	oloo ted, erte ilate	od fl , els ed fi e / c	low sew fron ope	ving vhe n, s en /	g thi ere skin / wi	rou ; n wl	igh hei n, t	n ca n co to al	pilla old / llow	ries gut bloo	; dur od t	ing o flo	exe ow tł	nrou	ıgh					ide ; 1 max
	(d)	wat <u>hyd</u> (ca	es / g A po er / ic <i>R lis</i> <u>rosta</u> using) ocytos	ore ons <i>t v</i> tic) p	s i s / vhi pr ore	n o glu ch res	cap ico <i>co</i> sui ure	oillan se, o <i>nta</i> re o filtr	ry w mc ins of bl ratio	vall ove <i>inc</i> looc on /	R our corr d is / A\	sp t; re <i>ct</i> gr We	ace A r <i>t su</i> eat	es, nan <i>ibst</i> ter f	ho ne <i>tan</i> tha	oles d sr nce / an (l	nall ⁄ red nydr	solu I blo osta	uble ood atic)	e sub cell:) pre	s essu	re o	of tis					king 3 max
		(i)	any i more more lowe lowe high AVP	e / e ç e, er, er (er ;	pl fat wa car ox e.	as / f ate bc yg	ma se atty r / son c en cel	, pr ; R y ac solu liox cor l se	ote su ids ite, ide nce cre	ins gar pol coi entra	; ilyc ten nce atio s su	ntial enti on ; ibsi	l ; ratio ; tano	on ce	/ lc tha	owe	r co in h	nce	ntra	ition					sue	fluid,		3 max
		(ii)	lymp	h	/ <u>h</u>	/m	pha	atic	flui	id;																		[1
		•			-																					67	Γοί	al: 11
																										Ľ	. 01	ai. 11

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9700	02

5 (a) one mark for each row

statement	haemoglobin	DNA	phospholipids	antibodies	
contains iron	\checkmark	х	x	х	;
contains phosphate	Х	\checkmark	\checkmark	х	;
able to self- replicate	х	\checkmark	х	х	;
hydrogen bonds stabilise the molecule	\checkmark	\checkmark	x	\checkmark	;
contains nitrogen	\checkmark	\checkmark	\checkmark	\checkmark	;

[5]

(b) AVP answers must be in context to a watery external environment ref to molecules held together / strong attraction / AW ;

A cohesion between water molecules

detail of hydrogen bonding, e.g. slight –ve charge on O, slight +ve charge on H ; A water molecules are polar

high boiling point / boils at 100°C;

high latent heat of vaporisation ;

so water is liquid over wide range of temperatures ;

(liquid so) provides, support / buoyancy;

high (specific) heat capacity ;

stable temperature / temperature of water does not change quickly ;

large amount of energy needed to be transferred from water for it to freeze / high latent heat of fusion ;

maximum density at $4^{\circ}C$ / less dense at $0^{\circ}C$;

provides surface tension ;

ref solvent ;

AVP ;

AVP ;

e.g. ref to surface dwellers, less need for support tissue,

stable habitat qualified, ref upwelling currents ice floats / insulates

[5 max]

[Total: 10]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9700 BIOLOGY

9700/02

Paper 2 (Theory 1), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

 (a) (i) bracket extends across whole bilayer; (ii) fluid phospholipids move (within their monolayer) / proteins, move / float; A phospholipids are liquid mosaic proteins, scattered / dispersed, within, phospholipids / bilayer; R membrane unqualified (iii) both made of, protein / polypeptide(s) / amino acids; both have disulphide bod; antigen binding site; variable region; constant region; A non-variable (b) helper cells secrete / release / produce, cytokines / lymphokines / hormones; to stimulate B cells to, divide / develop into plasma cells; (which) produce antibodies; stimulate macrophages to carry out phagocytosis; cytotoxic / killer T cells seek out / find / bind to, (foreign) antigens, on host cells / pathogens; destroy, virally infected host cells / intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface of cells / yunch holes' intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface of cells / purch holes' intracellular parasites / viruses; attach to surface to fuels / our holes / using tell surface (plasma) membrane; (release) toxic substances / hydrogen peroxide (into cells) / interferons; R enzymes (c) control of entry and exit of substances; barrier to, polar molecules / oell contents; allow substances across, passively / by diffusion; ref to channel proteins; A pore allow transport protein once move substances through carrier proteins; active transport; ref to facilitated diffusion; endocytosis / exocytosis / phagocytosis / pinocytosis; recognise, hormones / neurotransmitters / chemical signals; sites of chemical reactions / sites for enzymes; 	Pa	ge 2		007.000	Mark Scheme		Syllabus	Paper
 (ii) fluid phospholipids move (within their monolayer) / proteins, move / float; A phospholipids are liquid mosaic proteins, scattered / dispersed, within, phospholipids / bilayer; R membrane unqualified [2] (iii) both made of, protein / polypeptide(s) / amino acids; both have disulphide bond; antigen binding site; variable region; constant region; A non-variable [2 max (b) helper cells secrete / release / produce, cytokines / lymphokines / hormones; to stimulate B cells to, divide / develop into plasma cells; (which) produce antibodies; stimulate macrophages to carry out phagocytosis; cytotoxic / killer T cells seek out / find / bind to, (foreign) antigens, on host cells / pathogens; destroy, virally infected host cells / intracellular parasites / viruses; attach to surface of cells / jounch holes' into cells / disrupt cell surface (plasma) membrane; (release) toxic substances / hydrogen peroxide (into cells) / interferons; R enzymes [4 max (c) control of entry and exit of substances; barrier to, polar molecules / water soluble molecules; adhesion; i idea of retaining, large molecules / cell contents; allow substances across, passively / by diffusion; ref to channel proteins; A pore allow transport protein once move substances through carrier proteins; active transport; ref to facilitated diffusion; endocytosis / exocytosis / phagocytosis / pinocytosis; i ecognise, hormones / neurotransmitters / chemical signals; sites of chemical reactions / sites for enzymes; 				GCE A/AS L	EVEL – October/Nov	ember 2008	9700	02
<pre>phospholipids move (within their monolayer) / proteins, move / float ;</pre>	(a)	(i)	brac	ket extends acro	oss whole bilayer ;			[1
 both have disulphide bond; antigen binding site; variable region; constant region; A non-variable [2 max (b) helper cells secrete / release / produce, cytokines / lymphokines / hormones; to stimulate B cells to, divide / develop into plasma cells; (which) produce antibodies; stimulate macrophages to carry out phagocytosis; cytotoxic / killer T cells seek out / find / bind to, (foreign) antigens, on host cells / pathogens; destroy, virally infected host cells / intracellular parasites / viruses; attach to surface of cells / 'punch holes' into cells / disrupt cell surface (plasma) membrane; (release) toxic substances / hydrogen peroxide (into cells) / interferons; R enzymes [4 max (c) control of entry and exit of substances; barrier to, polar molecules / water soluble molecules; adhesion; idea of retaining, large molecules / cell contents; allow substances across, passively / by diffusion; ref to channel proteins; A pore allow transport protein once move substances through carrier proteins; active transport; ref to facilitated diffusion; endocytosis / exocytosis / phagocytosis / pinocytosis; recognise, hormones / neurotransmitters / chemical signals; sites of chemical reactions / sites for enzymes; [3 max 		(ii)	pho: <i>m</i> os	spholipids move A pho <i>aic</i> eins, scattered /	ospholipids are liquid dispersed, within, pho			[2]
 secrete / release / produce, cytokines / lymphokines / hormones ; to stimulate B cells to, divide / develop into <u>plasma</u> cells ; (which) produce antibodies ; stimulate macrophages to carry out phagocytosis ; <i>cytotoxic / killer T cells</i> seek out / find / bind to, (foreign) antigens, on host cells / pathogens ; destroy, virally infected host cells / intracellular parasites / viruses ; attach to surface of cells / 'punch holes' into cells / disrupt cell surface (plasma) membrane; (release) toxic substances / hydrogen peroxide (into cells) / interferons ; R enzymes (c) control of entry <u>and</u> exit of substances ; barrier to, polar molecules / water soluble molecules ; adhesion ; idea of retaining, large molecules / cell contents; allow substances across, passively / by diffusion ; ref to channel proteins ; A pore <i>allow transport protein once</i> move substances through carrier proteins ; active transport ; ref to facilitated diffusion ; endocytosis / exocytosis / phagocytosis / pinocytosis ; recognise, hormones / neurotransmitters / chemical signals ; sites of chemical reactions / sites for enzymes ; [3 max 		(iii)	both disu antig varia	<i>have</i> lphide bond ; gen binding site able region ;	• •	iino acids ;		[2 max]
 barrier to, polar molecules / water soluble molecules ; adhesion ; idea of retaining, large molecules / cell contents; allow substances across, passively / by diffusion ; ref to channel proteins ; A pore allow transport protein once move substances through carrier proteins ; active transport ; ref to facilitated diffusion ; endocytosis / exocytosis / phagocytosis / pinocytosis ; recognise, hormones / neurotransmitters / chemical signals ; sites of chemical reactions / sites for enzymes ; 	(b)	sec to s (wh stin cyte see des atta	crete / stimul nich) p nulate o <i>toxic</i> k out stroy, ach to	 release / product ate B cells to, disproduce antibodi produce antibodi macrophages t / killer T cells / find / bind to, (virally infected hose surface of cells 	vide / develop into <u>plas</u> es ; o carry out phagocyto foreign) antigens, on h iost cells / intracellular / 'punch holes' into ce es / hydrogen peroxide	<u>sma</u> cells ; sis ; nost cells / patho parasites / virus ills / disrupt cell	ogens ; ses ; surface (plasma)	membrane; [4 max]
ITotal: 12	(c)	bar adh idea allo ref mor acti ref enc	rier to nesion a of ro w sul to cha to cha ve su ive tra to fac docyto ognis	b, polar molecule n; etaining, large m bstances across annel proteins; n bstances throug ansport; cilitated diffusion bsis / exocytosis e, hormones / n	es / water soluble mole nolecules / cell content , passively / by diffusio A pore <i>allow transp</i> h carrier proteins ; ; / phagocytosis / pinoc eurotransmitters / cher	s; on ; o <i>rt protein once</i> sytosis ; mical signals ;		[3 max]
								[Total: 12]

	Pa	ge 3		Mark Scheme	Syllabus	Paper
				GCE A/AS LEVEL – October/November 2008	9700	02
2	(a)	(i)	ลรรเ	ıme answer is about glycogen		
			1–6	iched ; , glycosidic, links / bonds ; coiled / helical ;		[2 max]
		(ii)	inso gluc (so) (so)	pact so large quantity can be stored ; luble so no osmotic effect ; ose would lower water potential ; A decrease, more r water would enter and cell volume would increase ; plant cells would need thicker cell walls / animal cells ose reactive molecule ;	-	[3 max]
	(b)	use	anno	otations to help award these points		
		1 2 3	at le	gen bridge / glycosidic bond, broken ; ft hand end of chain ; er shown to be involved ; A hydrolysis		
		4 5	free	glucose molecule with –OH drawn on C1 ; n now ends with –OH on C4 ;		[3 max]
						[Total: 8]
3	(a)	up t 24 / enz	to sub 25 to tyme	no reference to data ostrate concentration of 24 / 25gdm ⁻³ , substrate conce o 30gdm ⁻³ , another factor is limiting ; concentration / temperature / pH ; tes, not filled up to 24 / 25gdm ⁻³ / all filled above 24 / 2	-	
		reft		nzyme working at maximum rate lisions between substrate molecules and enzyme ;		[3 max]
	(b)			ape starting at the origin and with plateau starting at 24 A plateau that starts between 7–12 au	4 / 25gdm ⁻³ ;	[2]
	(c)	san fits	npetit ne <u>sh</u> to ao into <i>a</i>	ive inhibitor / effect described in terms of <u>competition</u> ; <u>ape</u> as protein / substrate / elastin ; A complementary ctive site R same / similar, structure to active site active site ; entry of substrate / prevents formation of ES complex		
		fits <u>sha</u>	into, a <u>pe</u> of	petitive inhibitor / described in terms of <u>not competing</u> a site other than active site / allosteric site ; enzyme changes / <u>shape</u> of active site changes ; te no longer complementary shape to substrate ;	• •	
		e.g. bloc	by c cks a	s permanently with, active site / other site on enzyme ; ovalent bonding ; ccess to active site / causes tertiary structure to chang formation of ES complex ;		[3 max]

F	Pag	je 4				_					Sche		-					labus			aper
					GC	E A/	AS	LEV	/EL	- 0	ctob	er/N	oven	nber	2008	8	9	700			02
(c		sam	up dif ne coi asure	nce	entra	ation	of i	nhib			ıbstra	ate ;									
		lowe	sam	e a e p	t lov late	au ;							out at inhib	Ū		trate	conce	entrati	on wi	ll rea	ach the
		lowe		e /	no a	activ	ity /	doe	s no				ame everse		-	-	ostrat	e cono	centra	ation	s ;
		acce	ept sl	ket	ch g	irapl	hs to	sho	ow r	esul	ts										[4 max]
(e	-	recc forc	ands bils du es aii /ents	urir r oเ	ig e it of	xhal ^F alve	atior ∋oli ;	ר; ;		alatio	on ;										[2 max]
(f	f)	emp	hyse A C0					c ob	stru	ctive	e, pul	mor	nary /	lung	dise	ase					[1]
																				[T	otal: 15]
4 (a		crea sucr <u>co-t</u> ene sucr	oump ates a rose i ransp rgy / rose o	an I mo <u>pori</u> AT diff	H⁺ g ves <u>t</u> / th P, p use	radi in w rou rovi s do	vith H gh <u>ca</u> ded wn c	l⁺ <u>o-tra</u> by r conc	nito	chor	ndria		nt;								
		thro	ugh p	pla	smo	desi	mata	Э;													[4 max]
(k	-	give	s lar	ge	surf	ace	area	a of I	men	nbra	ine ;	reas	<u>e</u> sur	face	area	;					
		(so)	man	ıy,	oum	ps c	or co	-trai	nspo	orter	s;										[2 max]
(c	c)	(i)	beca more can	A (aus e de / ca see A e see).5 r e of etail an s e ce e.g. e de	nm (f sho can ee tv ll str ribos tail c	0.00 rt <u>er</u> be wo p uctu som	05 µ wav see ooint res res / ructu	um) veler n / n s th that mer ures	com ngth nuch at ar are mbra	ipare ; A n clea re clo not v anes t visik	d wi sma arer ose t visib	ower ; ith 20 Iller (at th ogeth le in t	0 nm e sar ner ; the Ll	n (0.0 me m M ;	agnif		n)			[2 max]

Second variant Mark Scheme

	Pa	ge 5	Mark Scheme	Syllabus	Paper
	14	900	GCE A/AS LEVEL – October/November 2008	9700	02
		sie sie sor no	g (length greater than width) ; ve plates ; ve pores ; ne / less / peripheral, cytoplasm ; nucleus / fewer mitochondria / less ER ; n wall ;		[2 max] [Total: 10]
5	(a)	<i>P. falciµ</i> to require	tted by, <i>Anopheles</i> / mosquito / (insect) vector ; barum / parasite, needs, warm / hot, temperatures / >20 ⁶ complete its life cycle (in the mosquito) ; nent for areas of still water (ref. mosquito life cycle); ted in areas outside tropics (e.g. North America) ;	°C,	[2 max]
	(b)	(i) A B	28 ; 14 ;		[2]
		reta pre	uce / halve, chromosome number ; ain diploid number at fertilisation ; vent chromosome number doubling each generation ; to variation ; A ref. to meiosis crossing over / independ	ent assortment	[2]
	(c)	A r many a many s antigen idea tha mutatio Plasmo A a T-lymph	complexity of <i>Plasmodium</i> ; ef to <i>Plasmodium</i> , being eukaryotic / having many gene ntigens / antigenic variation ; tages in life cycle (within human) ; s change in different stages ; at variation generated during meiosis ; ns / recessive alleles, are expressed in haploid stage(s) <i>dium</i> / parasite, lives within cells ; A only briefly free in antigenic concealment nocyte / B-lymphocyte, receptors not stimulated ;	; ora	[4 may]
		antibod	ies cannot work against stages within cells ;		[4 max]
					[Total: 10]
6	B C	3 4			

- C D E F
- 4 9 6 2

[5]

[Total: 5]