BIOLOGY

Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Mark scheme abbreviations:

;	separates marking points alternative answers for the same point		
R	reject		
A	accept (for answers correctly cued by the question, or by extra guidance)		
AW	alternative wording (where responses vary more than usual)		
underline	actual word given must be used by candidate (grammatical variants accepted)		
max	indicates the maximum number of marks that can be given		
ora	or reverse argument mp		
marking point (with relevant number)			
ecf	error carried forward I		ignore
:---			

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
1(a)	locus position of gene on chromosome ; homozygous (has) two identical alleles (of a gene) ;	$\mathbf{2}$	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer						Mark	Guidance
1(b)	six from mp1 parental phenotypes mp2 parental genotypes mp3 gametes mp4 \& mp5 offspring genotype mp6 offspring phenotypes link (fur) (nose) (fur) (nose) mp7 ratio 3:3:1:1;	yellow fur ked to gen black black black black	black nos Bb Be types; yellow black yellow black	Be BBee Bbee blac blac brow brow	k fur, b e; bE Be bE BbEe bbEe	nose ; be Bbee bbee		if monohybrid cross ecf to max 2 for mp3 and mp4 if different letter symbols used to those given in question ecf to max 5 and \boldsymbol{R} mp2 ecf for mp1 if genotypes wrong in mp2 I male and female/paternal and maternal ecf if gametes match mp2 A paternal gametes written twice two marks if all 6 genotypes correct one mark if 5 genotypes correct one mark if all correct for ecf from mp2 \& mp3 phenotypes must clearly match genotypes
						Total:	8	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
2(a)(i)	in C4 plants two from PEP joins to $\mathrm{CO}_{2} /$ PEP carboxylase fixes CO_{2}; (first photosynthetic) product is a 4C compound ; oxaloacetate / malate /aspartate ; (4C compound) releases/provides, CO_{2} for, rubisco ;	2	I photorespiration I ref. to Kranz anatomy/arrangement of cells in C4 leaf A binds to/reacts/combines with A CO_{2}, released/provided, for Calvin cycle/light independent reaction I CO_{2} transported
2(a)(ii)	made up of more than one polypeptide ;	1	A 16/several/multiple/many/two or more I because it has large and small polypeptides \mathbf{R} it has more than four polypeptides
2(a)(iii)	two from hydrophilic/polar/ charged, outside/at surface; hydrophobic/non-polar/non-charged, inside ; globular (protein) ; ref. to polar interactions/hydrogen bonds, with water (molecules);	2	I Van der Waals A H bonds with water Rionic/covalent bonds
2(b)	two from no (new) CO_{2} fixed / (previously) fixed carbon lost as CO_{2}; photosynthesis decreased ; less, RuBP (re)generated/available ; less, TP/glucose, will be made ; energy/ATP, used in making RuBP wasted ;	2	A Calvin cycle/light independent reaction, decreased I less GP A less GALP will be made

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
2(c)	three from Calvin cycle/light independent reaction, stops ; no RuBP (for rubisco); as no, ATP; as no reduced NADP ; as no, light dependent reaction/photophosphorylation;	$\mathbf{3}$	
		Total:	$\mathbf{1 0}$

Question	Answer	Mark	Guidance
3(a)(i)	(restriction) endonuclease/restriction enzyme ;	1	
3(a)(ii)	(DNA) ligase ;	1	
3(a)(iii)	two from (so) gene can be, expressed/transcribed/switched on ; (so) RNA polymerase can bind ; (so) transcription factors can bind ; to control level of expression ;	2	I if events stated as happening in bacteria A promoters/they are, needed for transcription/gene expression I translation
3(a)(iv)	three from 1 small ; 2 circles (of DNA) ; 3 contain genes (for enzymes) to enable DNA transfer to plant cells ; 4 contain, restriction sites/polylinkers ; 5 own origin of replication/can multiply independently ; 6 ref. to marker genes ;	3	A contain, vir/virulence, genes A can be cut by restriction enzymes e.g. antibiotic resistance genes

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
3(b)	$\begin{array}{l}\text { three from } \\ \beta \text {-carotene, gene(s) come from a different species ; } \\ \text { ora } \beta \text {-carotene/new/inserted, gene(s) not in rice cannot breed two different species } \\ \text { together ; } \\ \text { local varieties have, desired/adaptive, genes/ alleles/characteristics ; } \\ \text { crossing them with Golden Rice combines (good/best) features ; }\end{array}$	$\mathbf{3}$	$\begin{array}{l}\text { A gene(s) for pro-vitamin A } \\ \mathbf{R} \text { genes for vitamin A }\end{array}$
\mathbf{R} local varieties of Golden Rice			
A idea that crossing or breeding combines features			
of both parents, or ability to make β carotene and			
local adaptation			

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
4(a)	three from Fansidar ${ }^{\circledR}$ is, more effective/better/kills more parasites, (than chloroquine) in >1 situation/overall ; ora except/chloroquine better (than Fansidar ${ }^{\text {® }}$), in Kenya in 2006 ; ora $\%$ figures with unit for both drugs in one location and year ; effectiveness of Fansidar ${ }^{\circledR}$ decreases (over time); effectiveness of chloroquine increases in Kenya (over time);	3	A sulfadoxine-pyrimethamine for Fansidar ${ }^{\circledR}$
4(b)	two from (in Kenya) effectiveness of/percentage killed by, chloroquine increases; (in Kenya) chloroquine selection pressure removed ; AVP ; e.g. non-resistant/chloroquine-susceptible, now have selective advantage	2	A chloroquine resistance no longer selected for A idea that chloroquine-susceptible more likely to survive/reproduce
4(c)	four from random/spontaneous/chance; mutation gives resistance (to drug) ; natural/directional, selection ; best-adapted/resistant/mutated, parasites, survive/reproduce ; ora favourable/resistance, alleles passed on (to offspring) ; increase in frequency of alleles for resistance ;	4	\mathbf{R} resistance to antibiotic but then ecf A pre-existing allele/variation (already exists) A resistants have selective advantage A mutated allele gives selective advantage I mutated allele has an advantage A resistant individuals pass on, their/the, alleles A decrease in frequency of allele for susceptibility
4(d)	discontinuous ;	1	

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
4(e)	two from (parasites are) haploid/not diploid ; do not reproduce (only) sexually ; (no need to calculate as) percentage of parasites killed = frequency of non-resistant allele ; ora percentage of parasites surviving $=$ frequency of resistant allele AVP ; Hardy-Weinberg principle requires, random mating/no migration/no mutation/no selection	2	A Hardy-Weinberg assumes organisms are diploid A descriptions e.g. $\mathrm{n} / 2 \mathrm{n}$, etc. A Hardy-Weinberg assumes organisms (only) reproduce sexually or that Plasmodium has stages that reproduce asexually A non-random mating/migration/mutation/selection affects, Plasmodium/parasites/allele for chloroquine resistance
	Total:	12	

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
5(a)	three from ref. to interactions between, biotic and abiotic (components) ; yes tree supports, many species/community / many interactions ; energy flow/food web, occurs on one tree ; no idea that tree is part of larger ecosystem/interactions occur with organisms outside tree ; part of, savannah/larger, energy flow/food web/nutrient recycling ;	3	A interactions between living and non-living or between, the community/populations of different species, and the physico-chemical environment A idea of, discrete/self-contained/self-sustaining, group of species/community A description of three-step food chain on tree
5(b)(i)	105 ;	1	A 104.5/104
5(b)(ii)	genus Acacia; species (Acacia) mellifera/ nilotica/ tortilis ;	2	\mathbf{R} genus name with lowercase first letter \mathbf{R} species name with uppercase first letter
5(b)(iii)	two from sample sizes in Table 5.1 1 are small ; 2 sample size varies (between the 3 species) ; ora 3 anomaly could be, missed/have disproportionate effect ; 4 small(er)/decreased, sample size would be, less representative/less valid/less accurate ; ora	2	ora idea that they should be the same e.g. large sample size reduces effects of anomalies or large sample size allows anomalies to be indentified/either maximum or minimum for A. tortilis could be an anomaly/high max for A. nilotica could be an anomaly

Page 11	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
5(c)	three from idea of, species, inter-related/interact (in reserve); to conserve one species need to protect whole ecosystem ; elephants/large animals, eat acacia; AVP; e.g. research raises, profile of/money for, game reserve or presence of research team deters elephant poachers	$\mathbf{3}$A knock-on effects e.g. insects (needed to) pollinate plants that elephants eat/insect competitors stunt trees so easier for elephants to reach I elephants eat insects	
		Total:	$\mathbf{1 1}$

Question	Answer	Mark	Guidance
6(a)(i)	C ;	$\mathbf{1}$	
6(a)(ii)	one from progesterone concentration decreases ; oestrogen concentration decreases, near end/in $\mathbf{D} ;$	$\mathbf{1}$	A progesterone is low, at end/in E A oestrogen concentration is low, at end/in \mathbf{E}
6(a)(iii)	corpus luteum ;	$\mathbf{1}$	
6(a)(iv)	one from maintain the endometrium ; negative feedback/inhibition, of, FSH/GnRH/LH ;	$\mathbf{1}$	A maintains the uterus lining \mathbf{R} maintains the, endometrium wall/uterus wall I thickens lining

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
6(b)	four from inhibits (secretion of), FSH/LH/GnRH ; from anterior pituitary gland; inhibits follicle, formation/development ; inhibits ovulation; ; mucus (to stop sperm) ; thick(ens) cervical macu prevents implantation ; AVP; e.g. negative feedback/endometrium inhospitable	$\mathbf{4}$	
		Total:	$\mathbf{8}$

Question	Answer	Mark	Guidance
7(a)	$\begin{aligned} & \mathbf{P}=\mathbf{Z} \text { line; } \\ & \mathbf{Q}=\mathbf{A} \text { band ; } \end{aligned}$	2	A Z disc/zwischenscheibe line $I Z$ band
7(b)	five from 1 calcium ions $/ \mathrm{Ca}^{2+}$, ions from sarcoplasmic reticulum ; 2 calcium ions/ Ca^{2+}, bind to troponin ; 3 troponin changes shape; 4 tropomyosin moves ; 5 from/exposing, (myosin) binding site on actin ; 6 myosin head binds (to actin) ; 7 myosin head tilts/power stroke occurs; 8 actin pulled ;	5	$\mathbf{R} \mathrm{Ca}^{+}$once but then ecf A actin-myosin cross-bridges form

Page 13	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
7(c)	three from synthesise/produce, ATP ; (ATP needed to) synthesise acetylcholine ; (ATP needed for) movement of vesicles/exocytosis ; (ATP needed to) transport calcium ions, out of presynaptic neurone/into sarcoplasmic reticulum ; (ATP needed to) synthesise acetylcholinesterase ; (ATP needed for) $\mathrm{Na}^{+}\left(-\mathrm{K}^{+}\right)$pumps / pumping/active transport ;	3	A provides ATP but \mathbf{R} releases ATP \mathbf{R} ref. to makes/produces, energy A make/produce, or description A vesicle fuses with cell membrane A pumping of Ca^{2+} into sarcoplasmic reticulum A sodium(-potassium) pump \mathbf{R} if direction wrong, i.e. $\mathrm{Na}+$ in or $\mathrm{K}+$ out
	Total:	10	

Question	Answer	Mark	Guidance
8(a)(i)	potassium hydroxide/sodium hydroxide (solution);	$\mathbf{1}$	A KOH/NaOH I limewater, calcium hydroxide, soda lime, (sodium) bicarbonate or hydrogen carbonate
8(a)(ii)	one from must not raise temperature too high for animals ; woodlice, movement/activity ;	$\mathbf{1}$	A high temperature $/ 30^{\circ} \mathrm{C}$ or over, could, harm/kill/distress, woodlice
8(a)(iii)	oxidative phosphorylation ;	$\mathbf{1}$	A electron transport chain/ETC

Page 14	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Page 15	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer					Mark	Guidance
8(c)	five from similarities 1 reduced NAD (used) in both; 2 NAD regenerated/glycolysis can continue, in both; differences yeast/ethanol mammalian tissue/lactate					5	A NADH/ NADH_{2} R reduced NAD produced A NAD ${ }^{+}$regenerated A (NADH) re-oxidised to NAD/NAD ${ }^{+}$
	3	decarboxylation	or	no decarboxylation	;		$\mathrm{A} \mathrm{CO}_{2}$ released (yeast) or not (mammals)
	4	irreversible	or	reversible	;		
	5	two steps/ pyruvate \rightarrow ethanal \rightarrow ethanol	and	one step/ pyruvate \rightarrow lactate	;		A pyruvic acid/lactic acid
	6	ethanal accepts H	and	pyruvate accepts H	;		\mathbf{R} they are dehydrogenated
	7	ethanol dehydrogenase	and	lactate dehydrogenase	;		A alcohol dehydrogenase \mathbf{R} lactase dehydrogenase

Page 16	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
9(a)	eight from (happens in) proximal convoluted tubule ; all/ 100%, glucose (reabsorbed/moves into blood) ; active transport/pumping, of Na^{+}out of cells into tissue fluid ; Na^{+}concentration decreases inside cells ; therefore Na^{+}enters (epithelial/tubule) cells from, lumen/filtrate ; by facilitated diffusion ; this is secondary active transport ; Na^{+}brings glucose with it ; this is co-transport ; (facilitated) diffusion of glucose out of cells into tissue fluid ; GLUT proteins (on basolateral membranes) ; ref. to microvilli (on lumen side/apical membrane) ; to increase surface area for reabsorption ; 14 tight junctions separate proteins of front and basolateral membranes;	8	A epithelial layer for cells of proximal convoluted tubule throughout but \mathbf{R} endothelial layer/tubule wall A interstitial fluid/blood/capillary I diffusion from tissue fluid to blood A ref. to co-transporter A interstitial fluid/blood/capillary

Page 17	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
9(b)	seven from 1 (low blood water potential) detected by osmoreceptors ; in hypothalamus; neurosecretory cells (stimulated to) produce ADH ; ADH released by posterior pituitary ; ADH transport in blood; (ADH) binds to receptors (on cell surface membranes) ; (of) collecting duct/distal convoluted tubule ; aquaporins/water transport proteins, added to membranes; increases permeability to water (of collecting duct/distal convoluted tubule) ; 10 water moves out of, filtrate/tubule lumen ; 11 by osmosis; 12 into, interstitial fluid/tissue fluid/blood/capillaries; 13 small volume of/concentrated, urine produced ; 14 increases water potential of blood (back to norm) ;	7	I ADH secreted into blood A description of vesicles with aquaporins fusing with (cell surface) membranes \mathbf{R} if in context of, proximal convoluted tubule/loop of Henle A returns Ψ to normal
	Total:	15	

Page 18	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
10(a)	eight from 1 mechanical energy converted to electrical ; ref. to sensory hair cell (is receptor/detects touch) ; cell membrane depolarises; (if at least) two hairs touched (within 35 seconds) ; action potential occurs ; action potential/depolarisation, spreads over, leaf/lobe ; ref. to hinge / midrib, cells; H^{+}, pumped out of cells/pumped into cell walls ; cell wall, loosens / cross-links broken; 10 calcium pectate dissolves (in middle lamella) ; $11 \mathrm{Ca}^{2+}$ (ions) enter cells; 12 water, enters/follows, by osmosis; 13 cells, expand/become turgid ; 14 change from convex to concave ; 15 trap shuts, quickly/in <1s / in 0.3s; 16 AVP; acid growth hypothesis/expansins/elastic tension;	8	A sensory or trigger hairs A receptor/generator, potential A if only one hair touched no closure \mathbf{R} nerve impulses A to midrib/to hinge

Page 19	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9700	43

Question	Answer	Mark	Guidance
10(b)	seven from control 1 gibberellin synthesis/dwarfism, controlled by gene Le/le; dominant allele/Le, gives, functional enzyme/active gibberellin ; ora enzyme converts inactive to active gibberellin ; stem elongation 4 without GA, transcription factor/PIF, attached to DELLA protein ; GA binds to receptor (complex) ; causes DELLA (protein) destruction ; transcription factor/PIF/RNA polymerase, binds to DNA ; (growth) genes, switched on/expressed/transcribed ; causes cell division ; 10 causes cell elongation; 11 increases internode length ; 12 loosens cell walls/acid growth; 13 so cells can expand when water enters ; 14 AVP ; e.g. interaction with auxin, ref. to expansins	7	I seed context throughout A recessive allele/le, gives, non- functional enzyme/non-active gibberellin A inhibition of transcription removed A breaks cross-links in cell wall
	Total:	15	

