CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/22

Paper 2 (Pure Mathematics), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	22

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	22

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Pa	age 4	Mark Scheme	Syllabus	Pap	
		Cambridge International AS/A Level – March 2016	9709	22	
1	-	ot division at least as far as quotient $2x^2 + kx$ quotient $2x^2 - x + 2$		M1 A1	
	Obtain	remainder 6		A1	[3]
	Specia	l case: Use of Remainder Theorem to give 6		B1	
2	Either	State or imply non-modular inequality $(x-5)^2 < (2x+3)^2$ or			
		corresponding pair of linear equations Attempt solution of 3-term quadratic equation or of 2 linear equations		B1 M1	
		Obtain critical values -8 and $\frac{2}{3}$		A1	
		State answer $x < -8$, $x > \frac{2}{3}$		A1	
	Or	Obtain critical value -8 from graphical method, inspection, equation		B 1	
		Obtain critical value $\frac{2}{3}$ similarly		B2	
		State answer $x < -8$, $x > \frac{2}{3}$		B1	[4]
3		$\ln x = \ln x^2$		B1	
		w for addition or subtraction of logarithms $x^2 = (3+x)(2-x)$ or equivalent with no logarithms		M1 A1	
		3-term quadratic equation		M1	
	Obtain	$x = \frac{3}{2}$ and no other solutions		A1	[5]
4	` '	se the iterative formula correctly at least once		M1	
		btain final answer 1.516 now sufficient iterations to justify accuracy to 3 dp or show sign change		A1	
		interval (1.5155, 1.5165)		B 1	[3]
		rate equation $x = \sqrt{\frac{1}{2}x^2 + 4x^{-3}}$ or equivalent		B 1	
	O	btain exact value $\sqrt[5]{8}$ or $8^{0.2}$		B 1	[2]
5		integral of form ke^{2x+1}		M1	
		correct $3e^{2x+1}$		A1	
		both limits correctly and rearrange at least to $e^{2a+1} =$ garithms correctly to find a		M1 M1	
	Obtain	•		A1	[5]

Cambridge International AS/A Level – March 2016 product rule to obtain expression of form $k_1 e^{-x} \sin 2x + k_2 e^{-x} \cos 2x$ in correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$ titute $x = 0$ in first derivative to obtain equation of form $y = mx$ in $y = 6x$ or equivalent with no errors in solution the first derivative to zero and obtain $\tan 2x = k$ of out correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 the derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent rive x^2 and y^2 never negative and conclude appropriately	M dep M	22 M1 A1 M1 A1 I1* A1 A1 A1 A1	[4]
in correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$ titute $x = 0$ in first derivative to obtain equation of form $y = mx$ in $y = 6x$ or equivalent with no errors in solution the first derivative to zero and obtain $\tan 2x = k$ yout correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 the derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	M dep M	A1 M1 A1 I1* I1* A1 A1	
in correct $-3e^{-x} \sin 2x + 6e^{-x} \cos 2x$ titute $x = 0$ in first derivative to obtain equation of form $y = mx$ in $y = 6x$ or equivalent with no errors in solution the first derivative to zero and obtain $\tan 2x = k$ yout correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 the derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	M dep M	A1 M1 A1 I1* I1* A1 A1	
titute $x = 0$ in first derivative to obtain equation of form $y = mx$ in $y = 6x$ or equivalent with no errors in solution te first derivative to zero and obtain $\tan 2x = k$ y out correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	M dep M	M1 A1 II* II* A1 A1 A1	
in $y = 6x$ or equivalent with no errors in solution the first derivative to zero and obtain $\tan 2x = k$ yout correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 the derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	M dep M	A1 I1* I1* A1 A1 A1	
te first derivative to zero and obtain $\tan 2x = k$ y out correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	M dep M	I1* I1* A1 A1 A1	
out correct process to find value of x in $x = 0.554$ in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	dep M	I1* A1 A1 B1	[4
in $x = 0.554$ in $y = 1.543$ $3y^{2} \frac{dy}{dx}$ as derivative of y^{3} te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^{2}}{3y^{2}}$ or equivalent	I	A1 A1 B1 M1	[4
in $y = 1.543$ $3y^2 \frac{dy}{dx}$ as derivative of y^3 te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent]	A1 B1 M1	[4
$3y^2 \frac{dy}{dx}$ as derivative of y^3 te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	ľ	B1 M1	[4
te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent	Ī	M1	
te derivative of left-hand side to zero and solve for $\frac{dy}{dx}$ in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent			
in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent			
in $\frac{dy}{dx} = -\frac{6x^2}{3y^2}$ or equivalent		A1	
		A1	
rve x^2 and y^2 never negative and conclude appropriately			
		A1	[4
te first derivative to -2 and rearrange to $y^2 = x^2$ or equivalent		B1	
titute in original equation to obtain at least one equation in x^3 or y^3	Ι	M1	
in $3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$		A1	
in (2, 2)		A1	
in $(\sqrt[3]{24}, -\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others		A1	[5
$2\sin x\cos x \frac{\cos x}{\cos x}$		R1	
lify to confirm $2\cos^2 x$		B1	[2
Use $\cos 2x = 2\cos^2 x - 1$		B 1	
Obtain $16\cos^2 x + 3$ or equivalent		A1	
State 3, following their expression of form $a\cos^2 x + b$		A1	[4
Obtain integrand as $\frac{1}{2}\sec^2 2x$		B1	
2	M	I1*	
Obtain correct $\frac{1}{4} \tan 2x$		A1	
	dep M	I1*	
Obtain $\frac{1}{2}\sqrt{3} - \frac{1}{2}$ or exact equivalent		A1	[5
p p	ate first derivative to -2 and rearrange to $y^2 = x^2$ or equivalent stitute in original equation to obtain at least one equation in x^3 or y^3 and $3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$ and $(2, 2)$ and $(\sqrt[3]{24}, -\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others $\frac{\cos 2x}{\sin x} \cos x \cdot \frac{\cos x}{\sin x}$ plify to confirm $2\cos^2 x$ Use $\cos 2x = 2\cos^2 x - 1$ Express in terms of $\cos x$ Obtain $16\cos^2 x + 3$ or equivalent State 3, following their expression of form $a\cos^2 x + b$ Obtain integrand as $\frac{1}{2}\sec^2 2x$ Integrate to obtain form $k \tan 2x$ Obtain correct $\frac{1}{4} \tan 2x$ Apply limits correctly Obtain $\frac{1}{4}\sqrt{3} - \frac{1}{4}$ or exact equivalent	stitute in original equation to obtain at least one equation in x^3 or y^3 $\sin 3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$ $\sin (2,2)$ $\sin (\sqrt[3]{24}, -\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others Let $2\sin x \cos x \cdot \frac{\cos x}{\sin x}$ be obtain $2\cos^2 x$ Use $\cos 2x = 2\cos^2 x - 1$ Express in terms of $\cos x$ Obtain $16\cos^2 x + 3$ or equivalent State 3, following their expression of form $a\cos^2 x + b$ Obtain integrand as $\frac{1}{2}\sec^2 2x$ Integrate to obtain form $k \tan 2x$ Obtain correct $\frac{1}{4} \tan 2x$ Apply limits correctly Apply limits correctly	stitute in original equation to obtain at least one equation in x^3 or y^3 M1 $\sin 3x^3 = 24$ or $x^3 = 24$ or $3y^3 = 24$ or $-y^3 = 24$ A1 $\sin (2,2)$ A1 $\sin (\sqrt[3]{24}, -\sqrt[3]{24})$ or $(2.88, -2.88)$ and no others A1 Express in terms of $\cos x$ M1 Obtain $16\cos^2 x + 3$ or equivalent State 3, following their expression of form $a\cos^2 x + b$ A1 Obtain correct $\frac{1}{4}\tan 2x$ Apply limits correctly M1 A1 M1 M2 A1 A1 M1 M2 M1 M2 M1 M1 M2 M1 M1 M

Mark Scheme

Syllabus

Paper

Page 5