MARK SCHEME for the March 2016 series

9709 MATHEMATICS

9709/32

Paper 3 (Pure Mathematics), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE[®] and Cambridge International A and AS Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^{*} implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
		of allower is equally acceptable)

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4		Mark Scheme Sylla		Paper	
		Cambridge International AS/A Level – March 2016 970	9 32	32	
1	Use	aw of the logarithm of a power, quotient or product	M 1		
		by logarithms and obtain a correct equation in x, e.g. $x^2 + 4 = 4x^2$	A1		
		in final answer $x = 2/\sqrt{3}$, or exact equivalent	A1	[3]	
2	Ugo	an(A + B) formula and obtain an equation in tan A	M 1		
2		an($A \pm B$) formula and obtain an equation in tan θ g tan 45° = 1, obtain a horizontal equation in tan θ in any correct form	A1		
		ce the equation to $7 \tan^2 \theta - 2 \tan \theta - 1 = 0$, or equivalent	A1		
		e a 3-term quadratic for tan θ	M1		
		in a correct answer, e.g. $\theta = 28.7^{\circ}$	A1		
		in a second answer, e.g. $\theta = 165.4^{\circ}$, and no others re answers outside the given interval. Treat answers in radians as a misread (0.500, 2.	A1	[6]	
	liðu	re answers outside the given interval. Treat answers in radians as a misread (0.500, 2.	89).]		
2		Consider sign of $x^5 - 3x^3 + x^2 - 4$ at $x = 1$ and $x = 2$, or equivalent	M1		
3	(i)	Complete the argument correctly with correct calculated values	A1	[2]	
				[2]	
	(ii)	Rearrange the given quintic equation in the given form, or work vice versa	B 1	[1]	
	(iii)	Use the iterative formula correctly at least once	M1		
		Obtain final answer 1.78	A1		
		Show sufficient iterations to 4 d.p. to justify 1.78 to 2 d.p., or show there is a sign chain the interval (1.775, 1.785)	nge A1	[3]	
4	(i)	Substitute $x = -\frac{1}{2}$ and equate to zero, or divide by $(2x + 1)$ and equate constant remain	der		
		io zero	M1		
		Obtain $a = 3$	A1	[2]	
	(ii)	(a) Commence division by $(2x + 1)$ reaching a partial quotient of $2x^2 + kx$	M 1		
	(11)	Obtain factorisation $(2x + 1)(2x^2 - x + 2)$	A1	[2]	
		[The M1 is earned if inspection reaches an unknown factor $2x^2 + Bx + C$ and an		[~]	
		equation in <i>B</i> and/or <i>C</i> , or an unknown factor $Ax^2 + Bx + 2$ and an equation in			
		A and/or B .]			
		(b) State or imply critical value $x = -\frac{1}{2}$	B 1		
		Show that $2x^2 - x + 2$ is always positive, or that the gradient of $4x^3 + 3x + 2$ is alw			
		show that $2x^2 - x + 2$ is always positive, of that the gradient of $4x^2 + 5x + 2$ is alw	B1*		
		Justify final answer $x > -\frac{1}{2}$	B1(dep*)	[3]	
		· 2	/		
5	(i)	State or imply $dx = \sqrt{3} \sec^2 \theta d\theta$	B 1		
5	(i)	Substitute for x and dx throughout	ы М1		
		Obtain the given answer correctly	A1	[3]	

Ρ	age (Mark Scheme	Syllabus		
		Cambridge International AS/A Level – March 2016	9709	32	
	(ii)	Replace integrand by $\frac{1}{2}\cos 2\theta + \frac{1}{2}$		B1	
		Obtain integral $\frac{1}{4}\sin 2\theta + \frac{1}{2}\theta$		B1√^	
		Substitute limits correctly in an integral of the form $c\sin 2\theta + b\theta$, where $cb \neq b\theta$	0	M1	
		Obtain answer $\frac{1}{12}\sqrt{3}\pi + \frac{3}{8}$, or exact equivalent		A1	[4]
		[The f.t. is on integrands of the form $a\cos 2\theta + b$, where $ab \neq 0$.]			
6	(i)	<i>EITHER</i> : State correct derivative of sin y with respect to x Use product rule to differentiate the LHS		B1 M1	
		Obtain correct derivative of the LHS		A1	
		Obtain a complete and correct derived equation in any form		A1	
		Obtain a correct expression for $\frac{dy}{dx}$ in any form		A1	
		<i>OR</i> : State correct derivative of $\sin y$ with respect to x		B1	
		Rearrange the given equation as $\sin y = x / (\ln x + 2)$ and attempt to d	ifferentiate	D4	
		both sides Use quotient or product rule to differentiate the RHS		B1 M1	
		Obtain correct derivative of the RHS		A1	
		Obtain a correct expression for $\frac{dy}{dx}$ in any form		A1	[5]
	(ii)	Equate $\frac{dy}{dx}$ to zero and obtain a horizontal equation in ln x or sin y		M1	
		Solve for ln x		M1	
		Obtain final answer $x = 1/e$, or exact equivalent		A1	[3]
7	(i)	Separate variables and attempt integration of one side Obtain terms a^{-y}		M1	
		Obtain term $-e^{-y}$		A1	
		Integrate xe^x by parts reaching $xe^x \pm \int e^x dx$		M1	
		Obtain integral $xe^x - e^x$		A1	
		Evaluate a constant, or use limits $x = 0$, $y = 0$		M1	
		Obtain correct solution in any form Obtain \hat{S} we have \hat{S} and \hat{S}		A1	[7]
		Obtain final answer $y = -\ln(e^x(1-x))$, or equivalent		A1	[7]
	(ii)	Justify the given statement		B 1	[1]

Ρ	age 6	6	Mark Scheme Sylla	bus	Pap	er
			Cambridge International AS/A Level – March 2016 970		32	
8		FITUEI	R: Substitute for r in the given equation of p and expand scalar product		M1	
0	(i)	LIINLI	Obtain equation in λ in any correct form		A1	
			Verify this is not satisfied for any value of λ		A1	
		<i>OR</i> 1:	Substitute coordinates of a general point of l in the Cartesian equation of pla	ane <i>n</i>	M1	
			Obtain equation in λ in any correct form	r P	A1	
			Verify this is not satisfied for any value of λ		A1	
		<i>OR</i> 2:	Expand scalar product of the normal to p and the direction vector of l		M1	
			Verify scalar product is zero		A1	
			Verify that one point of <i>l</i> does not lie in the plane		A1	
		<i>OR</i> 3:	Use correct method to find the perpendicular distance of a general point			
			of <i>l</i> from <i>p</i>		M1	
			Obtain a correct unsimplified expression in terms of λ		A1	
			Show that the perpendicular distance is $5/\sqrt{6}$, or equivalent, for all λ		A1	
		<i>OR</i> 4:	Use correct method to find the perpendicular distance of a particular point		1.41	
			of <i>l</i> from <i>p</i>		M1	
			Show that the perpendicular distance is $5/\sqrt{6}$, or equivalent		A1	
			Show that the perpendicular distance of a second point is also $5/\sqrt{6}$, or			
			equivalent		A1	[3]
	(ii)	EITHEF	R: Calling the unknown direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ state equation $2a + b + 3c$	r = 0	B 1	
	()		State equation $2a-b-c=0$		B1	
			Solve for one ratio, e.g. $a : b$		M1	
			Obtain ratio $a:b:c=1:4:-2$, or equivalent		A1	
		OR:	Attempt to calculate the vector product of the direction vector of <i>l</i> and the n	ormal		
			vector of the plane p, e.g. $(2\mathbf{i} + \mathbf{j} + 3\mathbf{k}) \times (2\mathbf{i} - \mathbf{j} - \mathbf{k})$		M2	
			Obtain two correct components of the product		A1	
			Obtain answer $2\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}$, or equivalent		A1	
			Form line equation with relevant vectors		M1	
			Obtain answer $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mu(\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$, or equivalent	1	A1∜	[6]
9	(i)		obtain $A = 3$		B1	
			elevant method to find a constant		M1	
			one of $B = -4$, $C = 4$ and $D = 0$		A1	
			a second value the third value		A1	[5]
		Obtain t	ine third value		A1	[5]
	(ii)	Integrat	e and obtain $3x - 4 \ln x$]	B1√^	
		Integrat	e and obtain term of the form $k \ln(x^2 + 2)$		M1	
		Obtain t	term $2\ln(x^2+2)$	1	A1√^	
		Substitu	the limits in an integral of the form $ax + b \ln x + c \ln(x^2 + 2)$, where $abc \neq 0$		M1	
			given answer $3 - \ln 4$ after full and correct working		A1	[5]
			_			-
10	(a)	Substitu	the and obtain a correct equation in x and y		B 1	
			= -1 and equate real and imaginary parts		M1	
			two correct equations, e.g. $x + 2y + 1 = 0$ and $y + 2x = 0$		A1	
			or x or for y		M1	
		Obtain a	answer $z = \frac{1}{3} - \frac{2}{3}$ i		A1	[5]

Page 7	Mark Scheme	Syllabus	us Pape	
	Cambridge International AS/A Level – March 2016	9709	32	
(b) (i) Show a circle with centre $-1+3$ i Show a circle with radius 1		B1 B1	
	Show the line Im $z = 3$ Shade the correct region		B1 B1	[4]
(ii) Carry out a complete method to calculate the relevant angle Obtain answer 0.588 radians (accept 33.7°)		M1 A1	[2]