

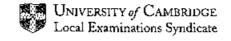
JUNE 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 75

SYLLABUS/COMPONENT:9709/3,8719/3
MATHEMATICS
(Pure 3)



Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

1	EITHER	: Express LHS in terms of $\cos\theta$ and $\sin\theta$ or in terms of $\tan\theta$	Ml	
		Make sufficient relevant use of double-angle formula(e)	Ml	
		Complete proof of the result	ΑI	
	OR:	Express RHS in terms of $\cos\theta$ and $\sin\theta$ or in terms of $\tan\theta$	Mi	
		Express RHS as the difference (or sum) of two fractions	Ml	
		Complete proof of the result	Al	3
		[SR: an attempt ending with $\frac{1 \cdot \tan^2 \theta}{\tan \theta} = \cot \theta - \tan \theta$ earns M1 B1 only.]		

2 EITHER: Show correct (unsimplified) version of the x or the x^2 or the x^3 term

Obtain correct first two terms 1+xObtain correct quadratic term $2x^2$ Al

Obtain correct cubic term $\frac{14}{3}x^3$ (allow $\frac{28}{6}$, 4.67, 4.66 for the coefficient)

Al

[The M mark may be implied by correct simplified terms, if no working is shown. It is not earned by unexpanded binomial coefficients involving $-\frac{1}{3}$, e.g. $-\frac{1}{3}C_1$ or $\begin{pmatrix} -\frac{1}{3} \\ 2 \end{pmatrix}$.]

[An attempt to divide 1 by the expansion of $(1-3x)^{\frac{1}{3}}$ earns M1 if the expansion has a correct (unsimplified) x, x^2 , or x^3 term and if the partial quotient contains a term in x. The remaining A marks are awarded as above.]

- OR: Differentiate and calculate f(0), f'(0), where $f'(x) = k(1-3x)^{-\frac{1}{2}-1}$ M1

 Obtain correct first two terms 1+x A1

 Obtain correct quadratic term $2x^2$ A1

 Obtain correct cubic term $\frac{14}{3}x^3$ (allow $\frac{28}{6}$, 4.67, 4.66 for the coefficient) A1
- Attempt to find a and/or quadratic factor by division or by inspection

 Obtain partial quotient or factor $x^2 x$ State answer a = 6State or imply the other factor is $x^2 x + 3$ A1

[The M1 is earned if division has produced a partial quotient $x^2 + bx$, or if inspection has an unknown factor $x^2 + bx + c$ and has reached an equation in b and/or c.]
[SR: a correct division with unresolved constant remainder can earn M1A1B0A1.]
[NB: successive division by a pair of incorrect linear factors, e.g. x - 1 and x + 2 or x + 1 and x + 2, can earn M1A10 or M1A1(if their product is of the form $x^2 + x + k$).]

Page 2	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – June 2002	9709, 8719	3

4	(i) Use the formula correctly at least once State $\alpha = 1.26$ as final answer Show sufficient iterations to justify $\alpha = 1.26$ to 2d.p., or show there is a sign change in the	M1 A1	
	interval (1.255, 1.265)	A1	3
	(ii) State any suitable equation in one unknown e.g. $x = \frac{2}{3} \left(x + \frac{1}{x^2} \right)$	B 1	
	State exact value of α (or x) is $\sqrt[4]{2}$ or $2^{\frac{1}{2}}$	Bl	2
5	Obtain derivative $\pm 2\sin x + k\cos 2x$ or $\pm 2\sin x + k(\cos^2 x \pm \sin^2 x)$	Ml	
	Equate derivative to zero and use trig formula to obtain an equation involving only one trig function	Ml	
	Obtain a correct equation of this type e.g. $2\sin^2 x + \sin x - 1 = 0$ or $\cos 2x = \cos(\frac{1}{2}\pi - x)$	Al	
	Obtain value $x = \frac{1}{6}\pi$ (allow 0.524 radians or 30°)	A 1	

Show by any method that the corresponding point is a maximum point

Determine that it corresponds to a minimum point

Obtain second value $x = \frac{5}{6} \pi$ (allow 2.62 radians or 150°), and no others in range

Αl

Αl

Al.

7

6 (i) State or imply
$$f(x) = \frac{A}{(3x+1)} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)}$$

State or obtain $A = -3$
State or obtain $B = 2$

Use any relevant method to find C
Obtain $C = 1$

[Special case: allow the form $\frac{A}{(3x+1)} + \frac{Dx+E}{(x+1)^2}$ and apply the above scheme $(A = -3, D = 1, E = 3)$.]

[SR: if f(x) is given an incomplete form of partial fractions, give B1 for a form equivalent to the omission of C, or E, or B in the above, and M1 for finding one coefficient.

(ii) Integrate and obtain terms
$$-\ln (3x+1) - \frac{2}{(x+1)} + \ln (x+1)$$

Use limits correctly

Obtain the given answer correctly

M1

A1 5

Page 3	Mark Scheme	Syllabus	Paper
_	A & AS Level Examinations – June 2002	9709, 8719	3

7 (i) State that
$$\frac{dm}{dt} = k(50 - m)^2$$
B1

Justify $k = 0.002$
B1

(ii) Separate variables and attempt to integrate $\frac{1}{(50 - m)^2}$

M1

Obtain $\pm \frac{1}{(50 - m)}$ and $0.002t$, or equivalent

Evaluate a constant or use limits $t = 0$, $m = 0$

Obtain any correct form of solution e.g. $\frac{1}{(50 - m)} = 0.002t + \frac{1}{50}$

A1

Obtain given answer correctly

(iii) Obtain answer $m = 25$ when $t = 10$

Obtain answer $t = 90$ when $m = 45$

B1

2

(iv) State that m approaches 50

B1

Αl

A1

1

8	(i)	State or in	nply a simplified direction vector of l is $3i - j + 2k$, or equivalent	Bl	
		State equa	ation of l is $r = i + k + \lambda(3i - j + 2k)$, or $\frac{x-1}{3} = \frac{y}{-1} = \frac{z-1}{2}$, or equivalent	ві∕	
		Substitute	in equation of p and solve for λ , or one of x , y , or z	Mi	
			point of intersection $-2i + j - k$	A1	4
			ntion is acceptable.]		
	(ii)	State or in	mply a normal vector of p is $i + 3j - 2k$	Bl	
	. ,		Use scalar product to obtain $a + 3b - 2c = 0$	Ml	
			Use points on I to obtain two equations in a, b, c e.g. $a+c=1$, $4a-b+3c=1$	B1 √	
			Solve simultaneous equations, obtaining one unknown	M1	
			Obtain one correct unknown e.g. $a = -\frac{2}{3}$	A 1	
			Obtain the other unknowns e.g. $b = \frac{4}{3}$, $c = \frac{5}{3}$	Al	
		OR:	Use scalar product to obtain $a + 3b - 2c = 0$	Ml	
			Use scalar product to obtain $3a - b + 2c = 0$	Bl√	
			Solve simultaneous equations to obtain one ratio e.g. a: b	Ml	

Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$ [NB: candidates may transfer from the *EITHER* to *OR* scheme by subtracting the two "point" equations, or transfer from *OR* to *EITHER* by finding one of the "point" equations.)

Obtain a:b:c=2:-4:-5, or equivalent

OR:	Calculate the vector product $(3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) \times (\mathbf{i} + 3\mathbf{j} - 2\mathbf{k})$	M 1
	Obtain answer + 4i + 8j + 10k, or equivalent	A1 . ↑
	Substitute in $-4x + 8y + 10z = d$ to find d, or equivalent	M1
	Obtain $d = 6$, or equivalent	Al
	Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$	Al

OR: State or imply a correct equation of the plane e.g.
$$\mathbf{r} = \lambda(3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mu(\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}) + \mathbf{i} + \mathbf{k}$$
 M1
State 3 equations in x , y , z , λ , and μ , e.g. $x = 3\lambda + \mu + 1$, $y = -\lambda + 3\mu$, $z = 2\lambda - 2\mu + 1$ A1
Eliminate λ and μ M1
Obtain equation $-4x + 8y + 10z = 6$, or equivalent A1
Obtain $a = -\frac{2}{3}$, $b = \frac{4}{3}$, $c = \frac{5}{3}$ A1

[SR: condone the use of xi + yj + zk for ai + bj + ck in the EITHER scheme and the first OR scheme.]

Page 4	Mark Scheme	Syllabus	Paper
,	A & AS Level Examinations – June 2002	9709, 8719	3

9 (i) State or imply that $r = 2$	BI	
State or imply that $\theta = \frac{1}{3}\pi$ (allow 1.05 radians or 60°)	Bl	
Obtain modulus 4, and argument $\frac{2}{3}\pi$ of u^2 (allow 2^2 ; 2.09 or 2.10 radians or 120°)	B1 + B1 ✓	
Obtain modulus 8 and argument π of u^3 (allow 2^3 ; 3.14 or 3.15 radians or 180°) [Follow through on wrong r and θ .]	BI♪	5
[SR: if u^2 and u^3 are only given in polar form, give B1 \nearrow for u^2 and B1 \nearrow for u^3 .] (ii) EITHER: Deduce that $u^2 - 2u + 4 = 0$ from $u^3 + 8 = 0$ OR: Verify that $u^2 - 2u + 4 = 0$ by calculation	5 1	
State that the other root is $1 - i\sqrt{3}$, or equivalent	BI Bl	2
[NB: stating that the roots are $1 \pm i\sqrt{3}$ is sufficient for both B marks.]	ъ.	2
(iii) Show both points correctly on an Argand diagram	Bl	
Show the correct relevant circle	Bi	
Show line (segment) correctly	B1	
Shade the correct region [SR: allow work on separate diagrams to be eligible for the first three B marks.]	Bl	4
(SIX. allow work on separate diagrams to be engineered the first time in the ball.)		
10 (i) State at any stage that the x-coordinate of A is equal to 1, or that A is the point $(1,0)$	Bl	1
(ii) State $f'(x) = 2 \frac{\ln x}{x}$, or equivalent	B1	
Use product or quotient rule for the next differentiation	M1	
Obtain $2 \cdot \frac{1}{x} \cdot \frac{1}{x} + 2 \ln x \cdot \left(\frac{-1}{x^2}\right)$, or any equivalent correct unsimplified form	Al	
Verify that $f''(e) = 0$	Al	4
(iii) State or imply area is $\int_{1}^{e} (\ln x)^2 dx$	В1	
Use $\frac{dx}{du} = e^{u}$, or equivalent, in substituting for x throughout	Ml	
Obtain given answer correctly (allow change of limits to be done mentally)	Al	3

[The substitution in (iii) may be done in reverse i.e. starting with the u integral and obtaining the x integral. The M1A1 scheme applies, but only an explicit statement will earn the B1.] [The M1A1A1 in (iv) applies to those working in terms of x and obtaining $x((\ln x)^2 - 2 \ln x \pm 2)$, or equivalent.]

Μl

Αl

A1

(iv) Attempt the first integration by parts, going the correct way

Obtain $(u^2 - 2u \pm 2)e^u$, or equivalent, after two applications of the rule

Obtain exact answer in terms of e, in any correct form, e.g. (e - 2e + 2e) - 2, or e - 2