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Prove the identity
cotf — tan @ = 2 cot 26. [3]

L
Expand (1 —3x) 3 in ascending powers of x, up to and including the term in x°, simplifying the
coefficients. [4]

The polynomial x* + 4x® + x + a is denoted by p(x). It is given that (x? + x + 2) is a factor of p(x).

Find the value of a and the other quadratic factor of p(x). [4]

The sequence of values given by the iterative formula

2 1
xn+1=§ xn+;—2- ,

n

with initial value x;, = 1, converges to a.

(1) Use this formula to find o correct to 2 decimal places, showing the result of each iteration. [31

(ii) State an equation satisfied by a, and hence find the exact value of o. [2]

The equation of a curve is y = 2 cos x + sin 2x. Find the x-coordinates of the stationary points on the

curve for which 0 < x < =, and determine the nature of each of these stationary points. {71
4x
Let f(x) = .
O = e
(i) Express f(x) in partial fractions. {51
1
(ii) Hence show that I f(x)dx=1-1n2. [5]
0
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In a certain chemical process a substance is being formed, and ¢ minutes after the start of the process

there are m grams of the substance present. In the process the rate of increase of m is proportional to

d
(50 — m)>. Whent=0,m=0and3nt—1=5.

(i) Show that m satisfies the differential equation

‘Z—':’ = 0.002(50 — m)°. [2]

(ii) Solve the differential equation, and show that the solution can be expressed in the form

500
. 5
t+10 51

m= 50—
(iii) Calculate the mass of the substance when ¢ = 10, and find the time taken for the mass to increase
from O to 45 grams. 2]

(iv) State what happens to the mass of the substance as ¢ becomes very large. [1]

The straight line / passes through the points A and B whose position vectors are i + Kk and 4i — j + 3k

respectively. The plane p has equation x + 3y — 2z = 3.
() Given that [ intersects p, find the position vector of the point of intersection. (4]
(if) Find the equation of the plane which contains / and is perpendicular to p, giving your answer in
the form ax + by + ¢z = 1. [6]

The complex number 1 + i+/3 is denoted by .

(1) Express u in the form r(cos 8 + isin 6), where r > 0 and —7 < 0 < 7. Hence, or otherwise, find
the modulus and argument of u? and °. [5]

(ii) Show that u is a root of the equation z* — 2z + 4 = 0, and state the other root of this equation.

[2]

(iii) Sketch an Argand diagram showing the points representing the complex numbers i and z. Shade
the region whose points represent every complex number z satisfying both the inequalities

|z—i|<1 and argzz=argu. {4]
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The function f is defined by f(x) = (Inx)? for x > 0. The diagram shows a sketch of the graph of
y = f(x). The minimum point of the graph is A. The point B has x-coordinate e.
(i) State the x-coordinate of A. [1]
(ii) Show that f"(x) = 0 at B. [4]

(iii) Use the substitution x = e to show that the area of the region bounded by the x-axis, the line
x = e, and the part of the curve between A and B is given by

1
J‘ w?e" du. 31
0 .
(iv) Hence, or otherwise, find the exact value of this area. (3]
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