UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9709 MATHEMATICS

9709/13

Paper 13, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
GCE AS/A LEVEL – May/June 2010		9709	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	13

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	13

$ar^{9} = \frac{-3}{128}$ (ii) $S_{\infty} = \frac{a}{1-r}$ used $\to 8$ M1 A1 [2] M1 A1 [2] Correct formula used. M1 needs $ r < 1$ [3] M1 A1 [2] [2] [3] M1 A1 [2] [4] [5] [6] [7] [8] M1 A1 [8] M1 A1 [9] Must be exactly 2 terms. $\sqrt{1}$ from his (i). [8] [9] [10] [11] [12] [12] [13] M1 A1 [14] [15] [16] [17] [18] [18] [19] [10] [10] [11] [11] [12] [13] [14] [15] [16] [17] [18] [18] [19] [10] [10] [11] [11] [12] [13] [14] [15] [16] [17] [18] [18] [19] [10] [10] [10] [11] [11] [12] [13] [14] [15] [16] [17] [18] [18] [18] [19] [10] [10] [10] [11] [11] [12] [13] [14] [15] [16] [17] [18] [18] [18] [19] [19] [10] [10] [10] [11] [12] [13] [14] [15] [16] [17] [18] [18] [18] [18] [19] [19] [10] [10] [10] [11] [12] [13] [14] [15] [16] [17] [18]		
(ii) $S_{\infty} = \frac{a}{1-r}$ used → 8 [3] M1 A1 [2] 2 (i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$ B1 ×3 [3] (ii) × (1 + x^2) → 60 − 12 = 48 M1 A1 $\sqrt{2}$ Must be exactly 2 terms. $\sqrt{2}$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) f(0) = 10, $a + b = 10$ f($^2/_3\pi$) = 1, $a - \frac{b}{2} = 1$ → $a = 4$, $b = 6$ (ii) Range is −2 to 10. (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 EITHER OF THESE both co $\sqrt{2}$ for his " $a - b$ " to " $a + b$ " [1] For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. → $4 - 3\sqrt{3}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere.	· ·	$6 \rightarrow r = -\frac{1}{2}$ M1 Attempt at r from "ar"
(ii) $S_{\infty} = \frac{a}{1-r}$ used $\to 8$ M1 A1 [2] 2 (i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$ B1 ×3 [3] (ii) $\times (1+x^2) \to 60 - 12 = 48$ B1 ×3 [2] Must be exactly 2 terms. $\sqrt{}$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ (ii) Range is -2 to 10 . B1 [2] B1 EITHER OF THESE both co [2] B1 for $\cos (\frac{5}{6}\pi) = -\cos(\frac{1}{6}\pi) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 Correct formula used. M1 needs $ r < 1$	$r = \frac{-3}{128}$	M1 A1 ar^9 must be correct. co
(ii) $S_{\infty} = \frac{a}{1-r}$ used $\to 8$ M1 A1 [2] 2 (i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$ B1 ×3 [3] (ii) $\times (1+x^2) \to 60 - 12 = 48$ B1 ×3 [2] Must be exactly 2 terms. $\sqrt{}$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ (ii) Range is -2 to 10 . B1 [2] B1 EITHER OF THESE both co [2] B1 for $\cos (\frac{5}{6}\pi) = -\cos(\frac{1}{6}\pi) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 Correct formula used. M1 needs $ r < 1$	120	[3]
2 (i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$ B1 ×3 [3] C0 [3] Must be exactly 2 terms. $\sqrt{}$ from his (i). 3 f: $x \mapsto a + b \cos x$ [1] B1 EITHER OF THESE both co (ii) Range is -2 to 10. B1 [2] B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $-3\sqrt{3}$ B1 co	$=\frac{a}{1}$ used $\rightarrow 8$	$ed \rightarrow 8$
2 (i) $\left(x - \frac{2}{x}\right)^6 = x^6 - 12x^4 + 60x^2$ B1 ×3 [3] (ii) × (1 + x^2) \rightarrow 60 - 12 = 48 M1 A1 $\sqrt{}$ Must be exactly 2 terms. $\sqrt{}$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1 EITHER OF THESE both co (ii) Range is -2 to 10. [2] B1 $\sqrt{}$ [1] (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 co	1-r	
(ii) $\times (1+x^2) \to 60 - 12 = 48$ M1 A1 $$ [2] Must be exactly 2 terms. $$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\to a = 4, b = 6$ B1 EITHER OF THESE B1 both co [2] Ill (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\to 4 - 3\sqrt{3}$ B1 co		
(ii) $\times (1+x^2) \to 60 - 12 = 48$ M1 A1 $$ [2] Must be exactly 2 terms. $$ from his (i). 3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\to a = 4, b = 6$ (ii) Range is -2 to 10 . (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 EITHER OF THESE both co $$ for his " $a - b$ " to " $a + b$ " [1] For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 co	$\left(\frac{2}{2}\right)^6 = r^6 + 12r^4 + 60r^2$	6 $12x^{4} + 60x^{2}$ $R1 \times 3$ $C0$
3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1 EITHER OF THESE B1 both co (ii) Range is -2 to 10. (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 co	$\begin{pmatrix} -x \\ x \end{pmatrix}$ $\begin{pmatrix} -x \\ -12x \end{pmatrix}$ $\begin{pmatrix} -12x \\ +00x \end{pmatrix}$	$\begin{bmatrix} 3 \end{bmatrix}$
3 f: $x \mapsto a + b \cos x$ (i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1 EITHER OF THESE B1 both co (ii) Range is -2 to 10. (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 co	$(1+x^2) \rightarrow 60-12=48$	$M1 \text{ A}1\sqrt{\text{Must be exactly 2 terms. }}\sqrt{\text{from his (i)}}$
(i) $f(0) = 10, \ a + b = 10$ $f(^2/_3\pi) = 1, \ a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1 EITHER OF THESE B1 both co (ii) Range is -2 to 10. (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 co	1 - 10	12 10
$f(^{2}/_{3}\pi) = 1, a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1	$a + b \cos x$	
$f(^{2}/_{3}\pi) = 1, a - \frac{b}{2} = 1$ $\rightarrow a = 4, b = 6$ B1	a = 10 $a + b = 10$	- h = 10
$\Rightarrow a = 4, b = 6$ (ii) Range is -2 to 10. $B1 \qquad both co$ $\Rightarrow a = 4, b = 6$ $B1 \qquad both co$ $\Rightarrow for his "a - b" to "a + b"$ $[1]$ $\Rightarrow a = 4, b = 6$ $\Rightarrow for his "a - b" to "a + b"$ $= for cos 30° = \frac{1}{2}\sqrt{3} \text{ used somewhere.}$ $\Rightarrow 4 - 3\sqrt{3}$ $\Rightarrow 4 - 3\sqrt{3}$ $\Rightarrow 4 - 3\sqrt{3}$		
(iii) Range is -2 to 10 . (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$ B1 Co	\mathcal{L}	
(iii) Range is -2 to 10 . B1 $$ for his " $a - b$ " to " $a + b$ " (iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere. $\rightarrow 4 - 3\sqrt{3}$	a = 4, b = 6	B1 com co
(iii) $\cos\left(\frac{5}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ $\Rightarrow 4 - 3\sqrt{3}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere.	nge is –2 to 10.	D 10. B1 $$ for his " $a - b$ " to " $a + b$ "
$\rightarrow 4-3\sqrt{3}$ B1 co	(5) (1) $\sqrt{3}$	
	$s\left(\frac{3}{6}\pi\right) = -\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$	$-\cos\left(\frac{1}{6}\pi\right) = -\frac{\sqrt{3}}{2}$ B1 For $\cos 30^\circ = \frac{1}{2}\sqrt{3}$ used somewhere.
	$4-3\sqrt{3}$	B1 co
4 (i) $2\sin x \tan x + 3 = 0$		
$2\sin x \frac{\sin x}{\cos x} + 3 = 0$ M1 For using $\tan = \sin \div \cos$	$\sin x \frac{\sin x}{\cos x} + 3 = 0$	$+3 = 0$ M1 For using $tan = sin \div cos$
$2\frac{(1-\cos^2 x)}{\cos x} + 3 = 0$ M1 For using $\sin^2 + \cos^2 = 1$ and everything	$\frac{1-\cos^2 x}{\cos x} + 3 = 0$	
correct	COSA	
$\rightarrow 2\cos^2 x - 3\cos x - 2 = 0$ [2] Answer given – check.	$2\cos^2 x - 3\cos x - 2 = 0$	$3\cos x - 2 = 0$ [2] Answer given – check.
(ii) $2\cos^2 x - 3\cos x - 2 = 0$	$\cos^2 x - 3\cos x - 2 = 0$	$\cos x - 2 = 0$
		2012
$x = 120^{\circ} \text{ or } 240^{\circ}$ [3]	- 120 Of 2 4 0	TO

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	13

5	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6}{\sqrt{3x - 2}}$		
	(i) $x = 2$, tangent has gradient 3	M1	Use of $m_1 m_2 = -1$ with dy/dx
	\rightarrow normal has gradient $-\frac{1}{3}$	M1 A1	Correct form of line eqn. for normal
	$\rightarrow y - 11 = -\frac{1}{3}(x - 2)$	[3]	
	(ii) Integrate $\rightarrow 6 \frac{\sqrt{3x-2}}{\frac{1}{2}} \div 3$	B1 B1	Without the ÷3 For ÷3, even if B0 above
	$\rightarrow y = 4\sqrt{3x - 2} + c \text{ through (2,11)}$	M1	Using (2, 11) for <i>c</i>
	$\rightarrow y = 4\sqrt{3x - 2} + 3$	A1	co
		[4]	
6	$\overrightarrow{OA} = \mathbf{i} - 2\mathbf{j} + 4\mathbf{k}, \ \overrightarrow{OB} = 3\mathbf{i} + 2\mathbf{j} + 8\mathbf{k},$		
	$\overrightarrow{OC} = -\mathbf{i} - 2\mathbf{j} + 10\mathbf{k}$		
	(i) $(\pm) 2i + 4j + 4k$	B1	co
	$(\pm) 4\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$	B1	co
	$\overrightarrow{AB}.\overrightarrow{CB} = 16$	M1	Needs to be scalar.
	$\overrightarrow{AB}.\overrightarrow{CB} = \sqrt{36}\sqrt{36}\cos\theta$	M1	For product of 2 moduli and cosine
	$\theta = 63.6^{\circ}$	M1 A1 [6]	All correct.
	(ii) Perimeter = $6 + 6 + \sqrt{40}$		
	or $6 + 6 + 6 \sin 31.8^{\circ} \times 2$	M1	Correct overall method for perimeter.
	→ 18.32	A1 [2]	СО
		(-J	
7	(i) $\sin \frac{1}{2}\theta = \frac{6}{10}$	M1	Use of trig with/without radians
	Angle $DOE = 1.287$ radians.	A1	co – answer given.
	(ii) $P = 12 + 12 + 2 \times 10 \times \text{angle } BOD$	[2] M1	Use of $s = r\theta$ for arc length.
	Angle $BOD = (\pi - 1.287)$ $\rightarrow 61.1$	M1 A1	Correct angle
		[3]	со
	(iii) Sector $DOE = \frac{1}{2} \times 10^2 \times 1.287$ Triangle $DOE = \frac{1}{2} \times 10^2 \times \sin 1.287$	M1 M1	Correct formula used with radians. Correct formula used with radians.
	Area = $\pi \times 10^2 - (2 \text{ sectors} - 2 \text{ triangles})$		Total State of the
	(or $48 + 48 + 2 \times \frac{1}{2} \times 10^2 \times (\pi - 1.287)$ M1 M1		
	\rightarrow 281 or 282	A1 [3]	со
1		1	1

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2010	9709	13

8	(i)	Mid-point of $AC = (2, 3)$	B1	Co
		Gradient of $AC = \frac{1}{3}$ Gradient of $BD = -3$	M1	Use of $m_1 m_2 = -1$
		Equation $y - 3 = -3(x - 2)$	A1	Co
	(;;)	If $x = 0$, $y = 9$, $B(0, 9)$	[3] B1√	on his equation.
	(11)	Vector move $D(4, -3)$	M1 A1	Valid method. co.
			[3]	
	(iii)	$AC = \sqrt{40}$	N/1	Comment and a sixth of AC on BD
		$BD = \sqrt{160}$ $Area = 40$	M1 M1 A1	Correct use on either AC or BD, Full and correct method. co
		(or by matrix method M2 A1)	[3]	T an and correct memod. Co
		4		
9	<i>y</i> =	$x + \frac{4}{x}$		
	(i)	$x + \frac{4}{x} = 5 \rightarrow A(1, 5), B(4, 5)$	B1 B1	co. co.
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{4}{x^2}$	M1	Differentiates.
		= 0 when $x = 2$, $M(2, 4)$.	DM1 A1 [5]	Setting to 0. co.
	(ii)	Vol of cylinder = $\pi 5^2$.3	B1	Any valid method.
		Vol under curve = $\pi \int y^2 dx$	M1	Attempt at integrating y^2
		r ³ 16		
		$Integral = \frac{x^3}{3} - \frac{16}{x} + 8x$	A2, 1, 0	Allow if no π present.
		Uses his limits "1 to 4"	DM1	Using his limits.
		$\rightarrow 75\pi - 57\pi = 18\pi$	A1	co.
			[6]	
10	f: 2	$x \mapsto 2x^2 - 8x + 14$		
	(i)	y + kx = 12, Sim Eqns.	M1	Complete elimination of y (or x)
		$\rightarrow 2x^2 - 8x + kx + 2 = 0$ Use of $b^2 - 4ac$	A1	•
		Use of $b^2 - 4ac$ $\rightarrow (k-8)^2 = 16 \rightarrow k = 12 \text{ or } 4.$	M1 A1	Uses $b^2 - 4ac$ on eqn = 0, no "x" in a, b, c . co.co
	(ii)	$2x^2 - 8x + 14 = 2(x - 2)^2 + 6$	[4] B1×3	
	` '	,	[3] B1√	$\sqrt{\text{ for } c}$ or from calculus.
	(111)	Range of $f \ge 6$.	[1]	
	(iv)	Smallest $A = 2$	B1√	to answer to (ii).
	(v)	Makes <i>x</i> the subject	[1] M1	Could interchange <i>x</i> , <i>y</i> first.
		Order of operations correct.	M1	Order must be correct.
		$g^{-1}(x) = \sqrt{\frac{x-6}{2}} + 2$	A1	co
		s w - V 2 + 2	[3]	