UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working.
 For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal
 to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF Any Equivalent Form (of answer is equally accept
--

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		61

1 $z_1 = \frac{30 - 28.3}{\sqrt{4.5}} = 0.8014$
2 (i) $0.25p = 0.075$ $p = 0.075/0.25 = 0.3$ B1 [1] Answer given, must show some working $p = 0.075/0.25 = 0.3$ (ii) $P(2 M) = \frac{P(2 \text{ and } M)}{P(M)}$ attempt at cond prob with single prod in num and Σ three 2-factor o.e prods in denom correct numerator of a fraction $= \frac{0.3825}{0.4875}$ A1 correct unsimplified denom correct answer 3 (i) $p = 0.1$ B1 [1] Summing 2 or 3 options One option correct unsimplified Σ or
(ii) $P(2 M) = \frac{P(2 \text{ and } M)}{P(M)}$ $= \frac{0.45 \times 0.85}{0.3 \times 0.1 + 0.45 \times 0.85 + 0.25 \times 0.3}$ B1
$= \frac{0.45 \times 0.85}{0.3 \times 0.1 + 0.45 \times 0.85 + 0.25 \times 0.3}$ $= \frac{0.3825}{0.4875}$ $= 0.785$ A1 [4] correct unsimplified denom $= 0.785$ B1 [1] (ii) (a) $P(X = 1, Y = 3) = 0.3 \times 0.2 = 0.06$ $P(X = 2, Y = 2) = 0.15 \times 0.5 = 0.075$ $P(X = 3, Y = 1) = 0.3 \times 0.3 = 0.09$ $P(\text{ sum is } 4) = 0.225$ B1 [3] Summing 2 or 3 options One option correct unsimplified A1 [3] correct final answer $= 0.3825$ $= 0.785$ B1 [1] Summing 2 or 3 options One option correct unsimplified $= 0.785$ A1 [3] correct final answer $= 0.785$ M1 [3] correct final answer $= 0.785$ M1 [3] correct numerator of a fraction $= 0.785$ A1 [4] correct numerator of a fraction $= 0.785$ A1 [4] correct answer $= 0.785$ M1 Summing 2 or 3 options One option correct unsimplified $= 0.785$ A1 [3] correct final answer
$= \frac{0.3825}{0.4875}$ $= 0.785$ A1 [4] correct unsimplified denom A1 [7] correct answer 3 (i) $p = 0.1$ B1 [1] (ii) (a) $P(X = 1, Y = 3) = 0.3 \times 0.2 = 0.06$ $P(X = 2, Y = 2) = 0.15 \times 0.5 = 0.075$ $P(X = 3, Y = 1) = 0.3 \times 0.3 = 0.09$ $P(\text{ sum is } 4) = 0.225$ A1 [3] correct unsimplified one M1 Summing 2 or 3 options One option correct unsimplified correct final answer A1 [3] correct final answer
3 (i) $p = 0.1$ B1 [1] (ii) (a) $P(X = 1, Y = 3) = 0.3 \times 0.2 = 0.06$ P($X = 2, Y = 2$) = $0.15 \times 0.5 = 0.075$ P($X = 3, Y = 1$) = $0.3 \times 0.3 = 0.09$ P(sum is 4) = 0.225 A1 [3] Summing 2 or 3 options One option correct unsimplified correct final answer
(ii) (a) $P(X = 1, Y = 3) = 0.3 \times 0.2 = 0.06$ $P(X = 2, Y = 2) = 0.15 \times 0.5 = 0.075$ $P(X = 3, Y = 1) = 0.3 \times 0.3 = 0.09$ P(sum is 4) = 0.225 M1 Summing 2 or 3 options One option correct unsimplified correct final answer (b) $P(X = 1, Y = \text{anything}) = 0.3$ M1 Σ 3 or more two-factor options
$P(X = 2, Y = 2) = 0.15 \times 0.5 = 0.075$ $P(X = 3, Y = 1) = 0.3 \times 0.3 = 0.09$ $P(\text{sum is 4}) = 0.225$ B1 One option correct unsimplified correct final answer (b) $P(X = 1, Y = \text{anything}) = 0.3$ M1 Σ 3 or more two-factor options
P(sum is 4) = 0.225 A1 [3] correct final answer (b) $P(X=1, Y=\text{anything}) = 0.3$ M1 Σ 3 or more two-factor options
$P(X = 3, Y = 1, 2) = 0.3 \times 0.8 = 0.24$ $P(X = 4, Y = 1) = 0.2 \times 0.3 = 0.06$ $P(X = 5, Y = 1) = 0.05 \times 0.3 = 0.015$
$P(\text{product} < 8) = 0.765 \qquad A1 [3] \text{Correct answer}$
OR $P(Y = 1, X = anything) = 0.3$ $P(Y = 2, X = 1, 2, 3) = 0.5 \times 0.75$ = 0.375
$P(Y=3, X=1, 2) = 0.2 \times 0.45 = 0.09$ B1 P(product < 8) = 0.765 A1
4 (i) $P(X < 5) = 1 - P(5, 6, 7)$ Binomial expression with powers Σ 7 and probs $\Sigma = 1$, and ${}_{7}C_{r}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(ii) $P(\text{at least } 1) = 1 - P(0) = 1 - (0.79)^7$ Attempt to find $P(\text{at least } 1)$ or $1 - P(0)$ and 1) $= 0.808$ P(exactly 3 weeks) = $(0.808)^3(0.192)_4C_3$ M1 Attempt to find $P(\text{at least } 1)$ or $1 - P(0)$ and 1) Rounding to correct answer Bin expression with powers Σ 4 and their 0.808 etc. and ${}_4C_3$
= 0.405 A1 [4] Correct answer

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012		61

5	(i) <u>Fla</u>	t screen conventional 6 5 7 9	B1		Correct stem must be integers
	6 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1		Correct flat screen leaves
		, , , , , , , , , , , , , , , , , , , ,	B1		Correct conventional screen leaves
	key 5	8 4 means 0.85 m for flat screen			
	and 0.8	84 m for conventional	B1	[4]	Key must have units and TV type
	` /	conventional median = 0.74 conv IQ range = $0.81 - 0.68 = 0.13$	B1 M1 A1	[3]	Correct median Their UQ – their LQ Correct answer
		d = 0.927 d = 0.0882	B1 B1	[2]	Need 3 s.f. (Accept 0.0878 to 0.0889)
6	(i) -	$-1.253 = \frac{6-\mu}{\sigma}$	B1		$Z = \pm 1.253$
	``	σ	B1		$Z = \pm 0.648$
	0.	$.648 = \frac{12 - \mu}{\sigma}$	M1		Any equation with μ and σ and a reasonable z value not a prob. Allow cc or –, not $\sqrt{\sigma}$ or σ^2
	•	= 9.9 = 3.15 or 3.16	M1 [Indp A1	ot] [5]	Att. to solve by substitution or elimination
	=	eed $P(z < -1 \text{ or } z > 1)$ $1 - \Phi(1) + \Phi(-1)$ $2 - 2 \times 0.8413$ 0.3174	B1 M1 M1		z = 1 or -1 seen Correct area i.e. $2 - 2\Phi$ Mult their prob if sensible, by 1000
	nı	umber = 317	A1	[4]	Accept 317, 317.4, 318
7	(a) (i	7 couples in 7! ways each couple in 2 ways so $7! \times 2^7$ = 645120	B1 M1 A1	[3]	7! seen multiplied mult by 2 ⁷ correct final answer
		OR $14 \times 12 \times 10 \times 8 \times 6 \times 4 \times 2 = 645120$	B2 A1		correct unsimplified answer correct answer
	(i	i) $7! \times 7! \times 2$ = 50,803,200 (50,800,000)	B1 B1	[2]	7! × 7! seen Correct answer
		OR 14×6!×7!	B1 B1		14×7! seen Correct answer

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9709	61

(b) (i) 7C2 = 21	B1	[1]	
(ii) all in: 1 all not in: 5C4 = 5	M1		Considering both cases
total 6	A1	[2]	Correct answer
(iii) 2 girls in: 6C2 × 3C2 = 45 3 girls in: 6C1= 6	M1		Attempt at summing 2 and 3 girls in the team need not see 3C2
Total 51	A1	[2]	Correct answer