MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Page 2 Mark Scheme		Paper	
	GCE AS/A LEVEL – May/June 2013	9709	41	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme		Paper	
	GCE AS/A LEVEL – May/June 2013	9709	41	

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

GCE AS/A LEVEL – May/June 2013 9709 1 (i) Less than B1 B1 [2] For applying Newton's sec (ii) $F = 1.25W$ so $W < F$ B1 [2] For applying Newton's sec (iii) $P = 99$ A1 [2] For applying Newton's sec 2 Increase in PE = 1250 × 10 × 600 B1 [2] B1 [2] 2 Increase in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$ B1 [3] [4] [5] WD against resistance = 400 × 600 B1 [5] For using WD by DF = Inc in KE + WD against resistance = 400 × 600 B1 [5] Special Rullurg for candidates who assume, without justification, that the driving force (DF) is come 4). [D] For applying Newton's sec 3 (i) [D] [D] [D] [D] [D] [D] 3 (i) [40 = 30t - 5t^2 + t = 2, 4] [M] [2] For using $0 = u^2 - 2gs$	d1 ond law.
iii) $F = 1.25W$ so $W < F$ B1 [2] (iii) $[P - 60 \times 1.25 = 6 \times 4]$ M1 For applying Newton's sec P = 99 A1 [2] 2 Increase in PE = $1250 \times 10 \times 600$ sin2.5° B1 [2] Decrease in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$ B1 For using WD by DF = Inc in KE + WD against resistance = 400×600 Speed is 26.7 ms^{-1} A1 [5] Speed is 26.7 ms^{-1} M1 For applying Newton's sec $\frac{1}{2} 30^2 + 2 \times (-0.156) \times 600$ B1ft ft value of a Speed is 26.7 ms^{-1} B1 [4] For using $0 = u^2 - 2gs$ (ii) $u^2 = 2 \times 10 \times 45$; speed is 30 ms^{-1} A1	ond law.
(ii) $\begin{bmatrix} P - 60 \times 1.25 = 6 \times 4 \end{bmatrix}$ $P = 99$ A1 $\begin{bmatrix} 2 \end{bmatrix}$ For applying Newton's sec $P = 99$ A1 $\begin{bmatrix} 2 \end{bmatrix}$ Increase in PE = 1250 \times 10 \times 600 Sin2.5° Decrease in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$ B1 $\begin{bmatrix} 562500 - 625v_{top}^2 = 327145 + 240000 \\ - 450000 \end{bmatrix}$ M1 $\begin{bmatrix} 562500 - 625v_{top}^2 = 327145 + 240000 \\ - 450000 \end{bmatrix}$ M1 $\begin{bmatrix} 562500 - 625v_{top}^2 = 327145 + 240000 \\ - 450000 \end{bmatrix}$ Speed is 26.7 ms ⁻¹ A1 $\begin{bmatrix} 5 \end{bmatrix}$ For using WD by DF = Inc in KE + WD against resistance and the driving force (DF) is constant. (b) For using VD by DF = Inc in KE + WD against resistance and the driving force (DF) is constant. (c) For using VD by DF = Inc in KE + WD against resistance and the driving force (DF) is constant. (c) For using VD by DF = Inc in KE + WD against resistance and the driving force (DF) is constant. (c) For using VD by DF = Inc in KE + WD against resistance in KE + WD against resistance and the driving force (DF) is constant. (c) For using VD by DF = Inc in KE + WD against resistance and the driving force (DF) is constant. (c) For using VD against resistance and the driving force (DF) is constant. (c) IDF - Weight component - Resistance and A1 I I I I I I I I I I I I I I I I I I	ond law.
P = 99A1[2]2Increase in PE = 1250 × 10 × 600 sin2.5°B1 Decrease in KE = $\frac{1}{2} 1250(30^2 - v_{top}^2)$ B1 B1 B1 B1 B1 	ond law.
2 Increase in PE = 1250 × 10 × 600 sin2.5° B1 B1 2 Increase in KE = ½ 1250(30 ² - v _{top} ²) B1 B1 WD against resistance = 400 × 600 B1 For using WD by DF = Inc in KE + WD against resistance - 450000] For using WD by DF = Inc in KE + WD against resistance Special Ruling for candidates who assume, without justification, that the driving force (DF) is constant. M1 For applying Newton's sec = Mass × Accel'n] M1 750 - 545 - 400 = 1250a A1 For applying Newton's sec = Mass × Accel'n] M1 750 - 545 - 400 = 1250a A1 [4] For using 0 = u ² - 2gs 3 (i) u ² = 2 × 10 × 45; speed is 30ms ⁻¹ A1 [2] Give a size of the formation of the	
$ \begin{array}{ c c c c c } sin2.5^{\circ} & & & & & & & & \\ Decrease in KE = \frac{1}{2} 1250(30^{2} - v_{top}^{2}) & B1 & & & \\ B1 & & & & & \\ WD against resistance = 400 × 600 & B1 & & \\ [562500 - 625v_{top}^{2} = 327145 + 240000 & & & \\ - 450000] & & & & & \\ Speed is 26.7 \text{ ms}^{-1} & & & & & \\ Speed is 26.7 \text{ ms}^{-1} & & & & & \\ \hline $	
WD against resistance = 400×600 B1For using WD by DF = Inc in KE + WD against resistance $[562500 - 625v_{top}^2 = 327145 + 240000$ $-450000]$ M1For using WD by DF = Inc in KE + WD against resistanceSpeed is 26.7 ms^{-1} A1[5]Special Ruling for candidates who assume, without justification, that the driving force (DF) is constant.4). $[DF - Weight component - Resistance = Mass × Accel'n]$ $750 - 545 - 400 = 1250a$ $v^2 = 30^2 + 2 \times (-0.156) \times 600$ B1ft B1ft B1For applying Newton's sec ft value of a3 (i) $u^2 = 2 \times 10 \times 45$; speed is 30 ms^{-1} M1 A1[2] For using $0 = u^2 - 2gs$ For using $s = ut - \frac{1}{2} \text{ gt}^2$ with	
$\begin{bmatrix} 562500 - 625v_{top}^2 = 327145 + 240000 \\ - 450000 \end{bmatrix} M1 = \begin{bmatrix} For using WD by DF = Inc in KE + WD against resistance in KE + WD against resistance is M1 = M1 $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Special Ruling for candidates who assume, without justification, that the driving force (DF) is constant.4).[DF - Weight component - Resistance = Mass × Accel'n]M1For applying Newton's sec750 - 545 - 400 = 1250a $v^2 = 30^2 + 2 \times (-0.156) \times 600$ M1ft value of a81 [4]B1ft [4]ft value of a9 (i) $u^2 = 2 \times 10 \times 45$; speed is 30 ms^{-1} M110 [40 = $30t - 5t^2 \rightarrow t = 2, 4$]For using $s = ut - \frac{1}{2} gt^2$ with	
4). (i) $\begin{bmatrix}DF - Weight component - Resistance = Mass \times Accel'n] & M1 & For applying Newton's sec M1 & A1 & V^2 = 30^2 + 2 \times (-0.156) \times 600 & B1ft & ft value of a & Speed is 26.7 ms^{-1} & B1 & [4] & For using 0 = u^2 - 2gs M1 & M1 & V^2 = 2 \times 10 \times 45; speed is 30ms^{-1} & A1 & [2] & For using 0 = u^2 - 2gs M1 & [40 = 30t - 5t^2 \rightarrow t = 2, 4] & For using s = ut - \frac{1}{2}gt^2 with$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	stant (maximum mark
$v^{2} = 30^{2} + 2 \times (-0.156) \times 600$ Speed is 26.7 ms ⁻¹ B1 ft value of a $B1 [4]$ ft value of a $u^{2} = 2 \times 10 \times 45; \text{ speed is } 30 \text{ ms}^{-1}$ A1 [2] For using $0 = u^{2} - 2\text{gs}$ (ii) $[40 = 30t - 5t^{2} \rightarrow t = 2, 4]$ For using $s = ut - \frac{1}{2} \text{ gt}^{2}$ with	ond law.
Speed is 26.7 ms ⁻¹ B 1 [4] 3 (i) $u^2 = 2 \times 10 \times 45$; speed is 30ms ⁻¹ (ii) [40 = 30t - 5t ² \rightarrow t = 2, 4] B 1 [4] M 1 [2] For using 0 = u ² - 2gs A1 [2] For using s = ut - $\frac{1}{2}$ gt ² with	
3 (i) $u^2 = 2 \times 10 \times 45$; speed is 30ms^{-1} (ii) $[40 = 30t - 5t^2 \rightarrow t = 2, 4]$ M1 A1 [2] For using $0 = u^2 - 2gs$ A1 [2] For using $s = ut - \frac{1}{2}gt^2$ with	
(ii) $u^2 = 2 \times 10 \times 45$; speed is 30ms^{-1} A1 [2] $[40 = 30t - 5t^2 \rightarrow t = 2, 4]$ For using $s = ut - \frac{1}{2} \text{ gt}^2$ with	
(ii) $[40 = 30t - 5t^2 \rightarrow t = 2, 4]$ For using $s = ut - \frac{1}{2} gt^2$ with	
$= t_2 - t_1$ or $s = ut + \frac{1}{2} gt^2 s$	
$[5 = \frac{1}{2} \cdot 10t^2 \rightarrow t = 1]$ M1 T = 2t	5, u 0 and
Time above the ground is 2 sA1ft[2]	
Special Ruling for candidates who assume, without justification, that the length of time required is movement only. (maximum mark 1).	that of the upward
(ii) $5 = \frac{1}{2} \cdot 10t^2 \rightarrow t = 1$, the length of time required is 1 s B1 B1	
(iii) Max. height above top of cliff = $\frac{1}{2}$ g(17 ÷ 4) (= 21.25) B1	
$[0 = V^2 - 2g(40 + 21.25)]$ M1 For using $0 = u^2 - 2gs$	
Speed is 35 ms ⁻¹ A1 [3]	

Page 5

Mark Scheme GCE AS/A LEVEL – May/June 2013

SyllabusPaper970941

	Alternative Marking Scheme for (iii)						
	(iii)				For using $40 = Vt - 5t^2 \Rightarrow$ $t_2 - t_1 =$		
			M1		$\frac{1}{2} - \frac{1}{2} - \frac{1}$		
		$17 = V^2/25 - 32$	A1				
		Speed is 35 ms ⁻¹	A1	[3]			
4	(i)	DF = 1500 000/37.5 (= 40 000)	B1				
		[DF - R = ma]	M1		For using Newton's second law		
		DF - 30 000 = 400 000a	A1				
		Acceleration is 0.025 ms^{-2}	A1	[4]			
	(ii)	$[1500\ 000/v - 30\ 000 = 0]$	M1		For using Newton's 2^{nd} law with $a = 0$		
		Steady speed is 50 ms ⁻¹	A1	[2]			
5	(i)	$R = 2.6 \times (12 \div 13) (= 2.4)$	B1				
		$[F = 0.2 \times 2.4]$	M1		For using $F = \mu R$		
		$\begin{bmatrix} T - 2.6(5 \div 13) - F = 0.26a, 5.4 - T = \\ 0.54a \end{bmatrix}$	M1		For applying Newton's 2 nd law to A or to B.		
		For any two of $T - 1 - 0.48 = 0.26a$, 5.4 - $T = 0.54a$ or (5.4 - 1 - 0.48) = (0.54 + 0.26)a	A1				
		Acceleration is 4.9 ms^{-2}	B1				
		Tension is 2.75 N (2.754 exact)	A1	[6]			
	(ii)	$[s = \frac{1}{2} 4.9 \times 0.4^2]$	M1		For using $s = \frac{1}{2} at^2$		
		Distance is 0.392 m	A1	[2]			
6	(i)		M1		For resolving forces in the x and y directions (or for sketching a marked triangle of forces)		
		$F\cos\theta = 2.5 \times 24 \div 25 + 2.6 \times 5 \div 13$	A1		(= 3.4)		
		$F\sin\theta = 2.6 \times 12 \div 13 - 2.5 \times 7 \div 25$	A1		(= 1.7)		
			M1		For using $F^2 = (F\cos\theta)^2 + (F\sin\theta)^2$ to find F or tan θ = Fsin θ ÷ Fcos θ to find θ		
		For $F = 3.80$ N or $tan\theta = 0.5$	A1				
		For $\tan\theta = 0.5$ or $F = 3.80$ N	B1	[6]			

	P	age 6	Mark Scheme			Syllabus	Paper]	
			GCE AS/A LEVEL			2013	9709	41	
	(ii)	[3.80 = 0.5a]		M1		For using Newton's 2 nd law with the magnitud the resultant force equal to the value of F foun			
		Accelerati	ion is 7.60 ms^{-2}	Alft		ft value of F found in (i) ft value of tanθ found in (i)			
		Direction <i>x</i> -axis.	is 26.6° clockwise from +ve	B1ft	[3]				
7	(i)	[0.000011	$7(1200t^2 - 12t^3) = 0]$	M1		For differentiating and solving $ds/dt = 0$ Accept just t = 100, if it is used to find distance AB.			
		$1200t^2 = 1$	$2t^3 \rightarrow t = 0,100$	A1					ıce
		Distance A	AB = 1170 m	A1	[3]				
	(ii)		M1		For differentiating again and solving $d^2s/dt^2 = 0$			= 0	
		2400t - 36	$6t^2 = 0 \Rightarrow t = 0, 200/3$	A1		Accept just t	t = 200/3, if it is used to find v_{max} .		
		$[v_{max} = 0.0]$	$\frac{0000117\{1200(200/3)^2 - 12(200/3)^3\}]}{12(200/3)^3\}}$	M1		[4] For substituting into v(t)			
		Maximum	speed is 20.8 ms ^{-1}	A1	[4]				
	(iii)	At A a(t)	= 0	B1					
			= 7(2400 × 100 - 36 × 100 ²) = 2 (-1.404 exact)	B1	[2]				
	(iv)	Sketch has	s v increasing						
			maximum and decreasing to aximum closer to $t = 100$ than	B1					
			s zero gradient at $t = 0$ and closer to $t = 0$ than $t = 100$.	B1	[2]				