MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/73

Paper 7, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	73

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	73

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

1	(i) (ii)	9.3	GCE AS/A LEVEL	– May/J	lune 2	012	9709	73	
		9.3			GCE AS/A LEVEL – May/June 2013				
	(ii)			B1	1				
	(11)	27.9		B1	1				
	(iii)	E(S-T)	17.4, $E(T) = 19.4$ T = -2.0, T = -7.2	M1 A1 B1ft	3	For subtracting their E[S] – E[T] can be non-numerical ft (i) & (ii) Adding (i) and (ii) ft non- negative answers only			
				[Tot	al: 5]				
2			shots independent OR scoring constant	B1		In context			
			core) = 0.82 core) > 0.82	B1		Both. Allow 'p'			
		= 0.102	$2^{19} \times 0.18 + 0.82^{20}$ (3 sf) ence that improved	M1 A1 B1f	5	For use of Bin(20,0.82)and either P(19) and/or P(20) attempted Valid comparison seen (with 0.05 if $H_1 p \neq$ 0.82) and correct conclusion ft numerical errors in 0.102 only			
						acceptable he	from $\frac{18.5-2}{\sqrt{20 \times 0.82}}$	en:	
							82 that improved S0 e for proportions	C 1	
				al: 5]					
3	(i)	z = 1.75	80/15 =(62) 1	B1 B1					
		$62' \pm z$	$\times \frac{12}{\sqrt{15}}$	M1		Any z			
		= 56.6 te	o 67.4 (3 sf)	A1	4	Must be an ir	iterval		
	(ii)	92% of	such intervals will contain μ	B1	1	Accept P(This interval contains μ) = 0.92			
	(iii)	Each po equally	ssible sample of this size is likely	B1	1	Each member chosen	r of pop equally	likely to be	
				al: 6]					

Page 5		е 5	Mark Scheme			Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2013			9709	73		
				-					
4	(i)	$e^{-2} \times 2(e^{-2})$	$\times) e^{-3} \times \frac{3^4}{4!}$	M1			the for P(1) with λ :	=2 OR P(4)	
		$e^{-5} \times \frac{5^4}{5!}$		B1		with λ=3 Correct exp'r	o'n		
		$\frac{162}{625}$ or 0.259 (3 sf)				dep M1B1			
		625		A1	4				
	(ii)	$(e^{-2} \times \frac{2}{r})$	$\frac{r}{!} = \frac{2}{3}e^{-2} \Longrightarrow)$						
			$2 \times r!$ OR $2^{r-1} = \frac{1}{3} \times r!$ $2^{r-1} = r!$	B1		Legitimately	shown		
		$3 \times 2^3 = 1$	$2^{r-1} = r!$) 24 OR 3! = 24 seen	B1	2	Legitimately	egitimately shown on either equation		
					tal: 6]				
5	(i)	$\int_{-\infty}^{\infty} \frac{k}{x^3} dx$	c = 1	M1		All correct, in to integrate	e, including limits and an attempt		
		$\int_{-\frac{k}{2x^2}}^{\infty} \frac{k}{x^3} dx$	$\int_{1}^{\infty} = 1$						
		$0 - (-\frac{k}{2})$	$\frac{1}{2} = 1$	A1	2	or $0 + \frac{k}{2} = 1$ or $\frac{k}{2} = 1$ AG must be			
						convincing	onvincing		
	(ii)	$\int_{1}^{2} \frac{2}{x^{3}} \mathrm{d}x$	r	M1		Attempt integ	Attempt integ $f(x)$; ignore limits		
		$\begin{bmatrix} -\frac{x^2}{2x^2} \\ 0 - \left(-\frac{k}{2}\right) \\ \int_{1}^{2} \frac{2}{x^3} dt \\ = \begin{bmatrix} -\frac{1}{x^2} \end{bmatrix}$	$\begin{bmatrix} 2\\ 1 \end{bmatrix}_{1}^{2}$						
		$=\frac{3}{4}$		A1	2				
	(iii)	$\int_{1}^{\infty} \frac{2}{x^2} dx$ $= \left[-\frac{2}{x} \right]$	x	M1		Attempt integ $xf(x)$; ignore limits			
		$=\left[-\frac{2}{r}\right]$	∞	A1		Correct & co	rrect limits		
	= 2				3				
	נז								

Evidence that mean wkly profit has increasedA1 f6or $35380 < 35400$ or $34600 < 34620$) If $H_1: \neq$, and 1.96 used, max B1B0M1A1M1A1f No contradictions(ii)Distr'n of X unknown.B1*Allow not NormalYesB1* dep 2B11(iii)0.05 or 5%B11(iv) $a-34600 = 1.645$ B11	Page 6			Mark So	Syllabus	Paper				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				GCE AS/A LEVEL	9709	73				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1		1			
N(940.8, 940.8) B1 Seen or implied $\frac{999.5 - 940.8}{\sqrt{940.8}}$ (= 1.914) M1 Allow with wrong or no cc. no sd/var $\psi(1.914^{+})$ = 0.972 (3 sf) M1 Allow with wrong or no cc. no sd/var mixes Image: Comparison of the state of the stat	6	(i)	$1 - e^{-3.5}$ (M1	3	Any λ allow one end error				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(ii)	N(940.8	B1		Seen or implied				
7 (i) Assume sd unchanged or 4500 B1 H_0 : Pop mean = 34600 B1 H_1 : Pop mean > 34600 B1 $\frac{35400 - 34600}{\sqrt{90}}$ M1 $\frac{4500}{\sqrt{90}}$ M1 $= 1.687/1.686$ (1.69) A1 $cf 1.645 < 1.686$ M1 $Evidence that mean wkly profit has increased M1 (ii) Distr'n of X unknown. Yes B1 (iii) 0.05 or 5% (iii) 0.05 or 5% a = 35380 \frac{35380 - 36500}{\sqrt{90}} a = 35380 \frac{35380 - 36500}{\sqrt{90}} 1 - \Phi('2.361') $			Φ('1.91	4')	M1	4	-			
H ₀ : Pop mean = 34600 B1 Both. Allow just μ , but not just "mean" $\frac{35400 - 34600}{4500}$ M1 Allow without $\sqrt{90}$ = 1.687/1.686 (1.69) A1 cf 1.645 < 1.686 M1 Evidence that mean wkly profit has increased A1 f (ii) Distr'n of X unknown. Yes B1* (iii) 0.05 or 5% (iiii) 0.05 or 5% (iii) $\frac{4500}{\sqrt{90}}$ $a = 34500$ A1 $\frac{4500}{\sqrt{90}}$ $a = 35380$ $\frac{4500}{\sqrt{90}}$ $1 = \Phi('2.361')$					[Total:	: 7]				
H ₁ : Pop mean > 34600 B1 Both. Allow just μ , but not just "mean" $\frac{35400 - 34600}{\sqrt{90}}$ M1 Allow without $\sqrt{90}$ = 1.687/1.686 (1.69) A1 M1 cf 1.645 < 1.686 M1 Valid comparison (or 0.0458/0.0459 < 0.0 or 35380 < 35400 or 34600 < 34620) Evidence that mean wkly profit has increased A1 f 6 (ii) Distr'n of X unknown. B1* Yes B1* dep 2 (iii) 0.05 or 5% (iv) $\frac{a - 34600}{\sqrt{90}} = 1.645$ $\frac{4500}{\sqrt{90}}$ A1 a = 35380 A1 $\frac{35380 - 36500}{\sqrt{90}}$ (= -2.361) M1 $\frac{4500}{\sqrt{90}}$ M1 $1 - \Phi('2.361')$ M1	7	(i)	Assume	sd unchanged or 4500	B1					
$\begin{array}{ c c c c c c }\hline \hline 4500\\ \hline \sqrt{90}\\ = 1.687/1.686 (1.69)\\ cf 1.645 < 1.686\\ Evidence that mean wkly profit has increased \\ \hline M1 \\ M1 \\ \hline \hline M1 \\ \hline \hline \hline \hline \hline M1 \\ \hline $					B1		Both. Allow j	just μ , but not ju	st "mean"	
$ \begin{array}{ c c c c c c c c } \hline & = 1.687/1.686 \ (1.69) \\ cf \ 1.645 < 1.686 \\ Evidence that mean wkly profit has increased \\ \hline & M1 \\ M1$			45	00	M1		Allow withou	without $\sqrt{90}$		
Yes B1* dep 2 (iii) $0.05 \text{ or } 5\%$ B1 1 (iv) $\frac{a-34600}{\sqrt{90}} = 1.645$ B1 1 $a = 35380$ A1 Attempt to find cv must see (+) 1.645 allow without $\sqrt{90}$. If found in (i) award when used $a = 35380$ A1 M1 $\frac{35380 - 36500}{\sqrt{90}}$ (= -2.361) M1 M1 M1 Standardising with their " CV " must use 1/90.			= 1.687/ cf 1.645 Evidenc	/1.686 (1.69) < 1.686 e that mean wkly profit has	M1	6	If $H_1: \neq$, and 1.96 used, max			
(iii) $0.05 \text{ or } 5\%$ (iv) $\frac{a-34600}{4500} = 1.645$ a = 35380 $\frac{35380 - 36500}{\sqrt{90}} (= -2.361)$ $1 - \Phi(^2.361^2)$ B1 1 Attempt to find cv must see (+) 1.645 allowithout $\sqrt{90}$. If found in (i) award when used M1 M1 M1 M1 Attempt to find cv must see (+) 1.645 allowithout $\sqrt{90}$. If found in (i) award when used		(ii)	Distr'n	of X unknown.	B1*		Allow not Normal			
(iv) $\frac{a-34600}{\frac{4500}{\sqrt{90}}} = 1.645$ a = 35380 $\frac{35380 - 36500}{\sqrt{90}}$ (= - 2.361) $1 - \Phi(^{2}.361^{2})$ M1 M1 M1 M1 M1 M1 M1 M1 M1 M1			Yes		B1* dep	2				
$\begin{array}{c c} \frac{4500}{\sqrt{90}} \\ a = 35380 \\ \frac{35380 - 36500}{\sqrt{90}} \\ 1 - \Phi(^{\circ}2.361^{\circ}) \end{array} \qquad $		(iii)	0.05 or :	5%	B1	1				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		(iv)	$\frac{4500}{\sqrt{90}}$							
$1 - \Phi(2.361')$ M1 Standardising with their "CV" must use			<u>35380 -</u> <u>45</u>	$\frac{-36500}{00}$ (= -2.361)	M1					
			$1 - \Phi(`2$	2.361')		6		g with their " CV	" must use	
Correct tail							Correct tail			
[Total: 14]					[Total:	14]				