CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the May/June 2015 series

9709 MATHEMATICS

9709/33 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International A Level – May/June 2015	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a "fortuitous" answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \"" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

P	age 4		Syllabus	Pape	r
		Cambridge International A Level – May/June 2015	9709	33	
1	Use law f	for the logarithm of a product, quotient or power		M1	
	Obtain a	correct equation free of logarithms, e.g. $\frac{x+4}{x^2} = 4$		A 1	
	Solve a 3	-term quadratic obtaining at least one root		M1	,
	Obtain fii	nal answer $x = 1.13$ only		A1	4
2	EITHER:	State or imply non-modular inequality $(x-2)^2 > (2x-3)^2$, or correspond	ding equation	on B1	
		Solve a 3-term quadratic, as in Q1.		M1	
		Obtain critical value $x = \frac{5}{3}$		A1	
		State final answer $x < \frac{5}{3}$ only		A1	
	<i>OR</i> 1:	State the relevant critical linear inequality $(2-x) > (2x-3)$, or correspond	nding		
		equation		B1	
		Solve inequality or equation for <i>x</i>		M1	
		Obtain critical value $x = \frac{5}{3}$		A1	
		State final answer $x < \frac{5}{3}$ only		A1	
	OR2:	Make recognisable sketches of $y = 2x - 3$ and $y = x - 2 $ on a single diag	ram	B1	
		Find <i>x</i> -coordinate of the intersection		M1	
		Obtain $x = \frac{5}{3}$		A1	
		State final answer $x < \frac{5}{3}$ only		A1	4
3	Use corre	ect tan $2A$ and cot A formulae to form an equation in tan x		M1	
3		correct equation in any form		A1	
		quation to the form $\tan^2 x + 6 \tan x - 3 = 0$, or equivalent		A1	
		hree term quadratic in $\tan x$ for x , as in Q1.		M1	
		nswer, e.g. 24.9° (24.896)		A 1	
	[Ignore o	econd answer, e.g. 98.8 (98.794) and no others in the given interval utside the given interval. Treat answers in radians as a misread.] aswers 0.43452, 1.7243		A1	6
4	Use corre	ect quotient or product rule		M1	
		orrect derivative in any form		A1	
	•	erivative to zero and obtain a horizontal equation		M1	
		t complete method for solving an equation of the form $ae^{3x} = b$, or $ae^{5x} = b$	e^{2x}	M1	
		$= \ln 2$, or exact equivalent		A1	
	Obtain y	$r = \frac{1}{3}$, or exact equivalent		A1	6
		-			

Mark Scheme

Page 4

Syllabus

Paper

Page 5		5	Mark Scheme			r
	J		Cambridge International A Level – May/June 2015	Syllabus 9709	33	
5		a_i	$= -4a\cos^3 t \sin t$, or $\frac{dy}{dt} = 4a\sin^3 t \cos t$		B1	
		Use $\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$		M1	
		Obtain con	rrect expression for $\frac{dy}{dx}$ in a simplified form		A1	3
	(ii)	Form the	equation of the tangent		M1	
			correct equation in any form		A1	•
		Obtain the	e given answer		A1	3
	(iii)		e-coordinate of P or the y -coordinate of Q in any form given result correctly		B1 B1	2
6	(i)	Integrate a	and reach $\pm x \sin x \mp \int \sin x dx$		M1*	
			egral $x \sin x + \cos x$		A1	
			limits correctly, must be seen since AG, and equate result to 0.5	M1(dep*)	4
		Obtain the	e given form of the equation		A1	4
	(ii)	EITHER:	Consider the sign of a relevant expression at $a = 1$ and at another results π	elevant value,		
			e.g. $a = 1.5 \le \frac{\pi}{2}$		M1	
		OR:	Using limits correctly, consider the sign of $\left[x \sin x + \cos x\right]_0^a - 0.5$,	or compare		
			the value of $[x \sin x + \cos x]_0^a$ with 0.5, for $a = 1$ AND for another $a = 1$	elevant value	e ,	
			$e.g \ a = 1.5 \le \frac{\pi}{2}.$		M1	
		Complete calculated	the argument, so change of sign, or above and below stated, both wi values	th correct	A1	2
	(iii)	Use the ite	erative formula correctly at least once		M1	
			al answer 1.2461		A1	
			ficient iterations to 6 d.p. to justify 1.2461 to 4 d.p., or show there is a rval (1.24605, 1.24615)	a sign change	A1	3
7	(i)	_	variables correctly and integrate one side		B1	
			m $2\sqrt{M}$, or equivalent		B1	
			m $50k\sin(0.02t)$, or equivalent	1	B1	
			a constant of integration, or use limits $M = 100$, $t = 0$ in a solution with $a\sqrt{M}$ and $b\sin(0.02t)$	h terms of	M1*	
		Obtain con	rrect solution in any form, e.g. $2\sqrt{M} = 50k \sin(0.02t) + 20$		A1	5
	(ii)	Use value	s $M=196$, $t=50$ and calculate k	M1(e	dep*)	
	` /	Obtain answer $k = 0.190$				2
	(iii)	State an ex	expression for M in terms of t, e.g. $M = (4.75 \sin(0.02t) + 10)^2$	M1(e	dep*)	
		State that	the least possible number of micro-organisms is 28 or 27.5 or 27.6 (2	27.5625)	A1	2

, 		mark continu	O ja.o.ao	<u>. upo.</u>	
		Cambridge International A Level – May/June 2015	9709	33	
(i)	EITHER:	u	+ i	M1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A1	
	OR:	Substitute for u , obtain two equations in x and y and solve for x or f	for y	M1	
		Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent		A 1	2
	•			B1	
				B1	
	Show a cii	rcle with radius 2		BI	4
ii)	State argu	ment $-\frac{1}{2}\pi$, or equivalent, e.g. 270°		B1	
	State or in	apply the intersection in the first quadrant represents 2 + i		B1	
	State argu	ment 0.464, (0.4636)or equivalent, e.g. 26.6° (26.5625)		B1	3
(i)	State or in	nply a correct normal vector to either plane, e.g. $\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$, or $2\mathbf{i} +$	j + 3 k	B1	
	ii)	(i) EITHER: OR: ii) Show a portion Show a circ Show	(i) EITHER: Substitute for u in $\frac{i}{u}$ and multiply numerator and denominator by 1 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent OR: Substitute for u , obtain two equations in x and y and solve for x or for Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent ii) Show a point representing u in a relatively correct position Show the bisector of the line segment joining u to the origin Show a circle with centre at the point representing u is Show a circle with radius 2 iii) State argument $-\frac{1}{2}\pi$, or equivalent, e.g. 270° State or imply the intersection in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in State argument u in the first quadrant represents u in the first quadrant u in the first quadrant represents u in the first quadrant u in the first quadrant u in the first quadrant u in the fir	(i) EITHER: Substitute for u in $\frac{i}{u}$ and multiply numerator and denominator by $1 + i$ Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent OR: Substitute for u , obtain two equations in x and y and solve for x or for y Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent ii) Show a point representing u in a relatively correct position Show the bisector of the line segment joining u to the origin Show a circle with centre at the point representing i Show a circle with radius 2 iii) State argument $-\frac{1}{2}\pi$, or equivalent, e.g. 270° State or imply the intersection in the first quadrant represents $2 + i$ State argument 0.464 , (0.4636) or equivalent, e.g. 26.6° (26.5625)	(i) EITHER: Substitute for u in $\frac{i}{u}$ and multiply numerator and denominator by $1 + i$ M1 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent OR: Substitute for u , obtain two equations in x and y and solve for x or for y M1 Obtain final answer $-\frac{1}{2} + \frac{1}{2}i$, or equivalent A1 Show a point representing u in a relatively correct position Show the bisector of the line segment joining u to the origin Show a circle with centre at the point representing i Show a circle with radius 2 B1 State argument $-\frac{1}{2}\pi$, or equivalent, e.g. 270° State or imply the intersection in the first quadrant represents $2 + i$ State argument 0.464 , (0.4636) or equivalent, e.g. 26.6° (26.5625) B1

Carry out correct process for evaluating the scalar product of two normal vectors

the product of their moduli and evaluate the inverse cosine of the result

Obtain answer 85.9° or 1.50 radians

Using the correct process for the moduli, divide the scalar product of the two normals by

Mark Scheme

Syllabus

Paper Paper

M1

M1

A1

4

Page 6

	•		Cambridg	ge International A Level – May/June 2015	9709	33	
(i	i) I	EITHER: Carry out a complete strategy for finding a point on l Obtain such a point, e.g. $(0, 2, 1)$ EITHER: State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for l ,		r <i>I</i> .	M1 A1		
				e.g. $a + 3b - 2c = 0$ and $2a + b + 3c = 0$ Solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 11 : -7 : -5$,	B1 M1 A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$		A1 [≜]	
			OR1:	Obtain a second point on <i>l</i> , e.g. $\left(\frac{22}{7}, 0, -\frac{3}{7}\right)$		B1	
				Subtract position vectors and obtain a direction vector for Obtain $22\mathbf{i} - 14\mathbf{j} - 10\mathbf{k}$, or equivalent	1	M1 A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(22\mathbf{i} - 14\mathbf{j} - 10\mathbf{k})$	*	A1⁴	
			OR2:	Attempt to find the vector product of the two normal vect	ors	M1	
				Obtain two correct components Obtain $11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k}$, or equivalent		A1 A1	
				State a correct answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda(11\mathbf{i} - 7\mathbf{j} - 5\mathbf{k})$		A1√	
	(OR3:	Express or	ne variable in terms of a second		M1	
				correct simplified expression, e.g. $x = (22 - 11y)/7$		A1	
			•	ne same variable in terms of the third		M1	
				correct simplified expression, e.g. $x = (11-11z)/5$		A1	
				ector equation for the line M1			
			State a cor	rrect answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda \left(\mathbf{i} - \frac{7}{11} \mathbf{j} - \frac{5}{11} \mathbf{k} \right)$		A1 [∱]	
	(<i>OR</i> 4:	_	ne variable in terms of a second		M1	
				correct simplified expression, e.g. $y = (22 - 7x)/11$		A1	
			•	ne third variable in terms of the second correct simplified expression, e.g. $z = (11 - 5x)/11$		M1 A1	
				ector equation for the line $2 = (11 - 3x)/11$		M1	
			State a cor	rrect answer, e.g. $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda \left(\mathbf{i} - \frac{7}{11} \mathbf{j} - \frac{5}{11} \mathbf{k} \right)$		A1≜	6
			[The √ ma	arks are dependent on all M marks being earned.]			
10 (i) (i	State or ir	$\operatorname{nply} f(x) \equiv$	$\frac{A}{2x-1} + \frac{B}{x+2} + \frac{C}{(x+2)^2}$		B1	
- (
				d to determine a constant		M1	
				ues $A = 2$, $B = -1$, $C = 3$ values A1 +		A1 A1	5
			_	scheme to the form $\frac{A}{2x-1} + \frac{Dx+E}{(x+2)^2}$; the values being A	= 2,	111	J
		D=-1, E		$2\lambda - 1 (\lambda \mp 2)$			

Mark Scheme

Page 7

Syllabus

Paper

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – May/June 2015	9709	33

(ii) Integrate and obtain terms
$$\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) - \frac{3}{x+2}$$
 B1 $\sqrt[4]{+}$ B1 $\sqrt[4]{+}$ B1

Use limits correctly, namely substitution must be seen in at least two of the partial fractions to obtain M1 Integrate all 3 partial fractions and substitute in all three partial fractions for A1 since AG.

M1

Obtain the given answer following full and exact working

A1

5

[The t marks are dependent on A, B, C etc.]

[SR: If B, C or E omitted, give B1M1 in part (i) and B1 $\sqrt[4]$ B1 $\sqrt[4]$ M1 in part (ii).]

[NB: Candidates who follow the A, D, E scheme in part (i) and then integrate $\frac{-x+1}{(x+2)^2}$

by parts should obtain $\frac{1}{2} \cdot 2 \ln(2x-1) - \ln(x+2) + \frac{x-1}{x+2}$ (the third term is equivalent

to
$$-\frac{3}{x+2}+1$$
).]