MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/41

Paper 4, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	41

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	41

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)	
-----	---	--

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Distance [0.2g - T] Tension ii T - F = 0 Frictional [R + 0.6si] Normal c F + 0.6co	$\frac{1}{2} 0.8 \times 5^{2}$] as 35 m = 0.2 × 1.6] as 1.68 N	- October/No	vembe M1 A1	r 20 4 2 2	For using $h = \frac{1}{2} gt^2$ For using $s = ut + \frac{1}{2} at^2$ For applying Newton's 2 nd law to <i>B</i> For applying Newton's 2 nd law to <i>A</i>
$t = 5 \text{ s}$ $[s = 5 \times 5$ Distance $[0.2g - T$ Tension is $T - F = 0$ Frictional $[R + 0.6si$ Normal co $F + 0.6co$	$\frac{1}{2} 0.8 \times 5^{2}$] as 35 m = 0.2 × 1.6] as 1.68 N 3 × 1.6 force is 1.2 N n α = 0.5g cos α] component is 4.63(2) N		A1 M1 A1 M1 A1 A1 M1 A1ft M1 A1 M1	2 3	For using $s = ut + \frac{1}{2} at^2$ For applying Newton's 2 nd law to <i>B</i> For applying Newton's 2 nd law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
$t = 5 \text{ s}$ $[s = 5 \times 5$ Distance $[0.2g - T$ Tension is $T - F = 0$ Frictional $[R + 0.6si$ Normal co $F + 0.6co$	$\frac{1}{2} 0.8 \times 5^{2}$] as 35 m = 0.2 × 1.6] as 1.68 N 3 × 1.6 force is 1.2 N n α = 0.5g cos α] component is 4.63(2) N		A1 M1 A1 M1 A1 A1 M1 A1ft M1 A1 M1	2 3	For using $s = ut + \frac{1}{2} at^2$ For applying Newton's 2 nd law to <i>B</i> For applying Newton's 2 nd law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
$[s = 5 \times 5]$ Distance $[0.2g - T]$ Tension if $T - F = 0$ Frictional $[R + 0.6si]$ Normal co $F + 0.6co$	$as 35 m$ $= 0.2 \times 1.6]$ $s 1.68 N$ 3×1.6 force is 1.2 N $n \alpha = 0.5g \cos \alpha]$ component is 4.63(2) N		M1 A1 M1 A1 A1 A1ft M1 A1 M1	2 3	For applying Newton's 2^{nd} law to <i>B</i> For applying Newton's 2^{nd} law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
Distance [0.2g - T] Tension ii T - F = 0 Frictional [R + 0.6si] Normal c F + 0.6co	$as 35 m$ $= 0.2 \times 1.6]$ $s 1.68 N$ 3×1.6 force is 1.2 N $n \alpha = 0.5g \cos \alpha]$ component is 4.63(2) N		A1 M1 A1 A1 A1ft M1 A1 M1	2 3	For applying Newton's 2^{nd} law to <i>B</i> For applying Newton's 2^{nd} law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
[0.2g - T] Tension in T - F = 0 Frictional [R + 0.6st Normal c	$= 0.2 \times 1.6]$ s 1.68 N 3×1.6 force is 1.2 N n α = 0.5g cos α] component is 4.63(2) N		M1 A1 A1 A1ft M1 A1 M1 A1	2 3	For applying Newton's 2^{nd} law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
Tension is T - F = 0 Frictional [R + 0.6si Normal co F + 0.6co	s 1.68 N 3×1.6 force is 1.2 N $n \alpha = 0.5 g \cos \alpha$] component is 4.63(2) N		A1 M1 A1 A1ft M1 A1 M1	3	For applying Newton's 2^{nd} law to <i>A</i> ft T – 0.48 For resolving forces perpendicular to the plane
T - F = 0 Frictional [R + 0.6s] Normal c F + 0.6co	3×1.6 force is 1.2 N $n \alpha = 0.5 g \cos \alpha$] component is 4.63(2) N		M1 A1 A1ft M1 A1 M1	3	ft T – 0.48 For resolving forces perpendicular to the plane
Frictional [R + 0.6st Normal c F + 0.6co	force is 1.2 N $n \alpha = 0.5 g \cos \alpha$] pomponent is 4.63(2) N		A1 A1ft M1 A1 M1		ft T – 0.48 For resolving forces perpendicular to the plane
Frictional [R + 0.6st Normal c F + 0.6co	force is 1.2 N $n \alpha = 0.5 g \cos \alpha$] pomponent is 4.63(2) N		A1ft M1 A1 M1		For resolving forces perpendicular to the plane
[R + 0.6st Normal c F + 0.6co	$n \alpha = 0.5 g \cos \alpha$] component is 4.63(2) N		M1 A1 M1		For resolving forces perpendicular to the plane
Normal c F + 0.6co	omponent is 4.63(2) N		A1 M1	2	the plane
F + 0.6co			M1	2	-
F + 0.6co			M1		For resolving forces parallel to a line
F + 0.6co	$s\alpha = 0.5g \sin \alpha$				
	$s\alpha = 0.5g \sin \alpha$				of greatest slope
Frictional					
	component is 0.824 N		A1	3	
Coofficia	nt is 0.178		M1 A1 ft	2	For using $\mu = F/R$
Coefficien	11 15 0.178		AIII	2	
			M1		For resolving forces in the 'x' and 'y' directions
X = 12cos	$s25^{\circ} - 8\cos 10^{\circ}$ (=	2.9972)	A1		
Y = 12sin	$25^{\circ} + 8\sin 10^{\circ} - 2$ (=	= 4.4606)	A1		
			M1		For using $R^2 = X^2 + Y^2$
R = 5.37			A1		
			M1		For using $\tan \theta = X/Y$
θ = 33.9			A1	7	
[5 = 2 + 0]	$.05t \text{ or } 25 = 4 + 2 \times 0.05(A)$	B)]	M1		For using $v = u + at$ or $v^2 = u^2 + 2as$
-		/-	A1		C
	[*]	,	B1	3	
			B1		
	,	e)	B1		
		*	M1		For using $s = 210$ when $t = 60$
-	-		A1		6
				5	ft $k \times 60^3$
	$Y = 12 \sin \theta$ $R = 5.37$ $\theta = 33.9$ $[5 = 2 + 0$ $Time take$ $Distance is$ $s = kt^{4}/4 (c)$ $C = 0 (ma)$ $[210 = k > k = 7/1080]$	Y = $12\sin 25^{\circ} + 8\sin 10^{\circ} - 2$ (4) R = 5.37 $\theta = 33.9$ [5 = 2 + 0.05 <i>t</i> or 25 = 4 + 2 × 0.05(<i>A</i>). Time taken is 60 s (or Distance is 21). Distance is 210 m (or Time taken is 6) $s = kt^{4}/4$ (+ <i>C</i>)	Y = $12\sin 25^{\circ} + 8\sin 10^{\circ} - 2$ (= 4.4606) R = 5.37 θ = 33.9 [5 = 2 + 0.05 <i>t</i> or 25 = 4 + 2 × 0.05(<i>AB</i>)] Time taken is 60 s (or Distance is 210 m) Distance is 210 m (or Time taken is 60 s) $s = kt^{4}/4$ (+ <i>C</i>) <i>C</i> = 0 (may be implied by its absence) [210 = $k \times 60^{4}/4$] k = 7/108000 or 0.0000648	$X = 12\cos 25^{\circ} - 8\cos 10^{\circ}$ $(= 2.9972)$ A1 $Y = 12\sin 25^{\circ} + 8\sin 10^{\circ} - 2$ $(= 4.4606)$ A1 $M1$ $M1$ $M1$ $R = 5.37$ A1 $\theta = 33.9$ A1 $[5 = 2 + 0.05t \text{ or } 25 = 4 + 2 \times 0.05(AB)]$ M1Time taken is 60 s (or Distance is 210 m)A1Distance is 210 m (or Time taken is 60 s)B1 $s = kt^4/4$ (+C)B1 $C = 0$ (may be implied by its absence)B1 $[210 = k \times 60^4/4]$ M1 $k = 7/108000$ or 0.0000648A1	$X = 12\cos 25^{\circ} - 8\cos 10^{\circ}$ $(= 2.9972)$ A1 $Y = 12\sin 25^{\circ} + 8\sin 10^{\circ} - 2$ $(= 4.4606)$ A1 $R = 5.37$ A1 $\theta = 33.9$ A1 7 $[5 = 2 + 0.05t \text{ or } 25 = 4 + 2 \times 0.05(AB)]$ M1 Time taken is 60 s (or Distance is 210 m) A1 Distance is 210 m (or Time taken is 60 s) B1 $s = kt^4/4$ (+C) B1 $C = 0$ (may be implied by its absence) B1 $[210 = k \times 60^4/4]$ M1 $k = 7/108000$ or 0.0000648 A1

Page 5	Page 5 Mark Scheme		Paper
GCE AS/A LEVEL – October/November 2012		9709	41

6	(i) ¹ /2	$\frac{1}{2} m v_{\rm B}^2 = \frac{1}{2} m v_{\rm A}^2 - mg \times 2.7$ and $\frac{1}{2} m v_{\rm c}^2 = \frac{1}{2} m v_{\rm A}^2 - mg \times 3$	M1 A1		For using the principle of conservation of energy from A to B or from A to C
		$[v_{B}^{2} = 8^{2} - 20 \times 2.7, v_{C}^{2} = 8^{2} - 20 \times 3]$ Loss of speed = 10 ^{1/2} - 2 = 1.16 ms ⁻¹	M1 A1	4	For substituting for v_A to find $v_B - v_C$
	(ii)	Work done = $\frac{1}{2} 0.2 \times 2^2 + 0.2 \times g \times 3$ (= 6.4)	M1 A1		For using: WD against friction (C to D) = KE at C + loss of PE (C to D)
			M1		For using WD against friction $(M \text{ to } D) =$ KE at $M + \text{loss of PE} (M \text{ to } D)$
		$\frac{1}{2}(0.4+6) = \frac{1}{2}0.2v_{\rm M}^2 + 0.2g \times 1.5$	A1		
		Speed at midpoint is 1.41 ms ⁻¹	A1	5	
7	(i)	DF = 17280/12 (= 1440 N)	B1		
		$[DF - R = ma \rightarrow 1440 - 960 = 1200a]$	M1		For using Newton's 2 nd law
		Acceleration is 0.4 ms ⁻²	A1	3	
	(ii)	[17280/V - 960 = 0] V = 18	M1 A1	2	For using $P/v - R = 0$ AG
	(iii)	For <i>BC</i> , -960 = 1200 <i>a</i> (<i>a</i> = -0.8)	B1		
			M1		For using $0 = 18 + at$ and $0 = 18^2 + 2as$ for <i>BC</i>
		$t_{BC} = (0 - 18)/(-0.8)$ and $s_{BC} = (0 - 18^2)/(-1.6)$ (= 22.5 s and 202.5 m)	A1		
		Distance $AB = 18(52.5 - 22.5)$	B1		
		Distance is AC is 742.5 m	A1	5	Accept 742 or 743