CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/62 Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *q* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Microad
	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
PA SOS	Premature Approximation (resulting in basically correct work that is insufficiently

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √' marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

					1
1		$P(x < -2.4) = P\left(z < \frac{-2.4 - 1.5}{3.2}\right)$	M1		Standardising no cc can have sq
		= P(z < -1.219) = 1 - 0.8886	M1		Correct area, i.e. < 0.5
		= 0.111	A1	[3]	Correct answer rounding to 0.111
2	(i)	$P(C \cap < 50) = 0.35 \times 0.2 = 0.07$	B1	[1]	
	(ii)	$P(C \mid <50) = \frac{P(C \cap <50)}{P(<50)}$	M1	[4]	Summing three 2-factor products seen anywhere (can omit the 1)
		$= \frac{0.35 \times 0.2}{0.25 \times 0.3 + 0.35 \times 0.2 + 0.4(\times 1)}$	A1		0.545 (unsimplified) seen as num or denom of a fraction
		$=\frac{0.07}{0.545}$	M1		Attempt at P(C \cap < 50) as 2-factor prod only seen as num or denom of a fraction
		= 0.128 (14/109)	A1		Correct answer
3	(i)	$z = 0.878$ $\frac{190 - 160}{100} = 0.878$	B1 M1		\pm 0.878, 0.88, rounding to 0.88 seen $(190-160)/\sigma$ = something
		σ $\sigma = 34.2$	A1	[3]	Correct answer
	(ii)	P(at least 1) = 1 - P(0)	M1		Using $1 - P(0)$, $1 - P(0, 1)$, $P(1,2 12)$ or $P(2, 12)$ with $p = 0.19$ or 0.81 , terms must be applied to get the M1
		$= 1 - (0.81)^{12} = 0.920$	A1	[2]	evaluated to get the M1 Correct answer accept 0.92
4	(i)	number = $1.5 \times 50 = 75$ (AG)	B1	[1]	Must see 1.5×50
	(ii)	freqs are 10, 25, 50, 75, 30 (15, 15) $Mean = (10 \times 125 + 25 \times 162.5 + 50 \times 187.5 + 75 \times 225 + 30 \times 300)/190$	M1 A1 M1		Attempt at freqs not fd Correct freqs attempt at mid points not cw or ucb or lcb
		= 40562.5/190 = 213 (213.48)	A1		correct mean
		$sd^{2} = 10 \times 125^{2} + 25 \times 162.5^{2} + 50 \times 187.5^{2} + 75 \times 225^{2} + 30 \times 300^{2})/190 - (213.48)^{2}$	M1		subst their Σfx^2 in correct variance formula
		sd = 46.5 or 46.6	A1	[6]	
	(iii)	have used the mid-point of each interval and not the raw data	B1	[1]	

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

(i)	$P(4, 5, 6) = (0.22)^{4}(0.78)^{4}8C4 + (0.22)^{5}(0.78)^{3}8C5 + (0.22)^{6}(0.78)^{2}8C6$	M1 M1		Bin term with ${}_{8}C_{r} p^{r} (1-p)^{8-r}$ seen $r \neq 0$ any $p < 1$
	0.0772	A 1	[2]	Summing 2 or 3 bin probs $p = 0.22$, $n = 8$
	=0.0/63	Al	[3]	Correct answer
(ii)	prob = 0.13 mean = $300 \times 0.13 = 39$ var = $300 \times 0.13 \times 0.87 = 33.93$	B1 B1ft		Correct prob can be implied Correct unsimplified np and npq ft wrong 0.13
	P(30 < x < 50) = P	M1		Standardising a value need sq rt
	$\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$	M1		Cont correction 30.5 / 31.5 or 48.5/49.5 only
	= P(-1.4592 < z < 1.8026) = $\Phi(1.8026) + \Phi(1.4592) - 1$	M1		Correct area $\Phi_1 + \Phi_2 - 1$ oe Rounding to correct answer
	= 0.9643 + 0.9278 - 1 = 0.892	A1	[6]	SC P(31,49)=300C31(0.13) ³¹ (0.87) ²⁶⁹ + +300C49 etc.) B1B1
(i)	1663200	B1	[1]	
(ii)	M xxxxxxxx M	M1		9! or 9P9 seen
	Number of ways = $\frac{9!}{3!2!}$ = 30240	A1	[2]	Correct answer
(iii)	4 vowels together = $8! \times 4/2!2!$ = 40320	M1 M1		8!/2!2! seen mult by something 4 oe 4!/3! or 4C1 etc. seen mult by something
	1663200 - 40320 = 1622880	B1	[3]	Correct answer SC 7!/2!2! × 8P4 or 7! × 8P4/3! Or 7!/2!2! × 8P4/3! M1
(iv)		M1		Summing 2 options
	Exactly 3 Es $4C1 = 4$ Total = 10 ways	A1	[3]	One option correct Correct answer
	OR 5C2 = 10	M2 A1		M1 for k5C2 Correct ans
	(ii) (ii) (iii)	mean = $300 \times 0.13 = 39$ var = $300 \times 0.13 \times 0.87 = 33.93$ P(30 < x < 50) = P $\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$ = $P(-1.4592 < z < 1.8026)$ = $\Phi(1.8026) + \Phi(1.4592) - 1$ = $0.9643 + 0.9278 - 1 = 0.892$ (i) 1663200 (ii) M xxxxxxxx M Number of ways = $\frac{9!}{3!2!} = 30240$ (iii) 4 vowels together = $8! \times 4/2!2!$ = 40320 1663200 - 40320 = 1622880 (iv) Exactly 2 Es $4C2 = 6$ Exactly 3 Es $4C1 = 4$ Total = 10 ways OR $5C2$	$= 0.0763$ (ii) prob = 0.13 mean = $300 \times 0.13 = 39$ yar = $300 \times 0.13 \times 0.87 = 33.93$ $P(30 < x < 50) = P$ $\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right)$ M1 $= P(-1.4592 < z < 1.8026) = \Phi(1.8026) + \Phi(1.4592) - 1 = 0.9643 + 0.9278 - 1 = 0.892$ M1 (i) 1663200 B1 (ii) M xxxxxxxx M Number of ways = $\frac{9!}{3!2!} = 30240$ A1 (iii) 4 vowels together = $8! \times 4/2!2! = 40320$ M1 $1663200 - 40320 = 1622880$ B1 (iv) Exactly 2 Es $4C2 = 6$ Exactly 3 Es $4C1 = 4$ Total = 10 ways OR $5C2$ M2	$= 0.0763 \qquad \qquad \text{A1} \qquad \textbf{[3]}$ $(ii) \text{prob} = 0.13 \text{mean} = 300 \times 0.13 = 39 \text{var} = 300 \times 0.13 \times 0.87 = 33.93$ $P(30 < x < 50) = P \qquad \qquad \text{M1}$ $\left(\frac{30.5 - 39}{\sqrt{33.93}} < z < \frac{49.5 - 39}{\sqrt{33.93}}\right) \qquad \text{M1}$ $= P(-1.4592 < z < 1.8026) \text{M1}$ $= \Phi(1.8026) + \Phi(1.4592) - 1 \text{A1} \textbf{[6]}$ $(i) 1663200 \qquad \qquad \text{B1} \textbf{[1]}$ $(ii) M \text{ xxxxxxxxx M} \text{M1}$ $\text{Number of ways} = \frac{9!}{3!2!} = 30240 \qquad \qquad \text{A1} \textbf{[2]}$ $(iii) 4 \text{ vowels together} = 8! \times 4/2!2! \text{M1}$ $= 40320 \qquad \qquad \text{M1}$ $1663200 - 40320 = 1622880 \qquad \qquad \text{B1} \textbf{[3]}$ $(iv) \text{Exactly 2 Es } 4C2 = 6 \text{Exactly 3 Es } 4C1 = 4 \text{Total} = 10 \text{ ways} \qquad \text{A1} \textbf{[3]}$ $OR 5C2 \qquad \qquad \text{M2}$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2013	9709	62

(i) options (3, 4, 4,) or (4, 3, 4) or (4, 4, 3) Probs (4/10 × 6/9 × 5/8) ×3C1 = 360/720			Summing three 3-factor options oe $10 \times 9 \times 8$ seen in denom
$=\frac{1}{2}$ AG	Al	[3]	Correct answer
$OR \frac{{}_{6}C_{2} \times {}_{4}C_{1}}{{}_{10}C_{3}} = \frac{1}{2} AG$			One of 6C2 or 4C1 seen in num 10C3 in denom Correct answer
	B1	[4]	9, 10, 11, 12 only seen
9 10 11 12 24/720 216/720 360/720 120/720	B1		One correct prob other than P(11), with or without replacement
$P(3, 3, 3) = 4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ $P(3, 3, 4) = 4/10 \times 3/9 \times 6/8 \times 3C1$	B1		Another correct prob
$= 216/720 (3/10)$ $P(4, 4, 4) = 6/10 \times 5/9 \times 4/8 = 120/720(1/6)$	B1		Σ all 4 probs = 1
$P(R) = 0.5 \ P(S) = 0.4 \ P(R \cap S) = 120/720$ $P(R \cap S) = 120/720 \neq P(R) \times P(S)$ Not indep	B1 M1	[3]	$P(R \cap S) = 120/720 \ (1/6)$ Numerical attempt to compare $P(R \text{ and } S)$ with $P(R) \times P(S)$ provided $P(R \cap S) \neq 1/5$ Correct conclusion ft wrong $P(R \cap S) \neq 1/5$
$P(R \cap S) \neq 0$ or there is an overlap between R and $S(34,4)$	B1ft	[1]	1/5, P(S) correct Correct answer following correct reasoning ft wrong non zero $P(R \cap S)$
	Probs $(4/10 \times 6/9 \times 5/8) \times 3C1$ = $360/720$ = $\frac{1}{2}$ AG OR $\frac{6C_2 \times_4 C_1}{10C_3} = \frac{1}{2}$ AG $\frac{9}{24/720} \frac{10}{216/720} \frac{11}{360/720} \frac{120}{120/720}$ P(3, 3, 3) = $\frac{4}{10} \times \frac{3}{9} \times \frac{2}{8} = \frac{24}{720} (\frac{1}{30})$ P(3, 3, 4) = $\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8} \times 3C1$ = $\frac{216}{720} (\frac{3}{10})$ P(4, 4, 4) = $\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8} = \frac{120}{720} (\frac{1}{6})$ P(R) = 0.5 P(S) = 0.4 P(R\cap S) = $\frac{120}{720}$ P(R\cap S) = $\frac{120}{720} \neq P(R) \times P(S)$ Not indep	Probs $(4/10 \times 6/9 \times 5/8) \times 3C1$ = $360/720$ = $\frac{1}{2}AG$ A1 $OR \frac{6C_2 \times_4 C_1}{10C_3} = \frac{1}{2}AG$ $M1 M1 M$	Probs $(4/10 \times 6/9 \times 5/8) \times 3C1$ = $360/720$ = $\frac{1}{2}AG$ A1 [3] $OR \frac{6^{C_2 \times 4} C_1}{10^{C_3}} = \frac{1}{2}AG$ M1 M1 M1 A1 B1 [4] $9 10 11 12$ $24/720 216/720 360/720 120/720$ B1 P(3, 3, 3) = $4/10 \times 3/9 \times 2/8 = 24/720 (1/30)$ P(3, 3, 4) = $4/10 \times 3/9 \times 6/8 \times 3C1$ = $216/720 (3/10)$ P(4, 4, 4) = $6/10 \times 5/9 \times 4/8 = 120/720(1/6)$ B1 P(R) = $0.5 P(S) = 0.4 P(R \cap S) = 120/720$ B1 M1 P(R\cappa S) = $120/720 \neq P(R) \times P(S)$ Not indep A1ft P(R\cappa S) \neq 0 or there is an overlap between R and S (34,4)