CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9709 MATHEMATICS

9709/32 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 implies that the A or B mark indicated is allowed for work correctly following
 on from previously incorrect results. Otherwise, A or B marks are given for correct work only.
 A and B marks are not given for fortuitously "correct" answers or results obtained from
 incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \\" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Obta	law of the logarithm of a power ain a correct linear equation in any form, e.g. $x = (x-2) \ln 3$ ain answer $x = 22.281$		M1 A1 A1	[3]
			B1 M1 A1	[3]
(ii)	Make recognisable sketch of $y = \csc x$ for the given interval Justify a statement that the estimate will be an overestimate		B1 B1	[2]
	3	ler to zero	B1	
Subs Obta Solv	stitute $x = 2$ and equate result to 21 or divide by $x - 2$ and equate constant remain a correct equation, e.g. $8a + 4b + 5 = 21$ er for a or for b	inder to 21	M1 A1 M1 A1	[5]
	Obtain either $\frac{dx}{dt} = \frac{3\sin t}{\cos^4 t}$ or $\frac{dy}{dt} = 3\tan^2 t \sec^2 t$, or equivalent		M1 A1 M1	
	Obtain the given answer		A1 B1 M1 A1	[4] [3]
	I+1	ominator,	B1 M1 A1	
	Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent OR: Obtain two equations in x and y , and solve for x or for y Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent		A1 M1 A1	[4]
	(i) (ii) Substantial Substanti	 Obtain answer x = 22.281 (i) State or imply ordinates 2, 1.1547, 1, 1.1547 Use correct formula, or equivalent, with h = 1/6 π and four ordinates Obtain answer 1.95 (ii) Make recognisable sketch of y = cosec x for the given interval Justify a statement that the estimate will be an overestimate Substitute x = -1/3, equate result to zero or divide by 3x + 1 and equate the remaind and obtain a correct equation, e.g1/27 a + 1/9 b - 1/3 + 3 = 0 Substitute x = 2 and equate result to 21 or divide by x - 2 and equate constant remainded to the constant remains and a correct equation, e.g. 8a + 4b + 5 = 21 Solve for a or for b Obtain a = 12 and b = -20 (i) Use chain rule correctly at least once Obtain either dx/dr = 3sint/cos²t or dy/dt = 3tan²tsec²t, or equivalent Use dy/dx = dy/dt + dt/dt Obtain the given answer (ii) State a correct equation for the tangent in any form Use Pythagoras Obtain the given answer (i) Substitute z = 1 + i and obtain w = 1+2i/1+i EITHER: Multiply numerator and denominator by the conjugate of the denomination or equivalent Simplify numerator to 3 + i or denominator to 2 Obtain final answer 3/2 + 1/2 i, or equivalent Obtain two equations in x and y, and solve for x or for y Obtain x = 3/2 or y = 1/2, or equivalent 	 Obtain answer x = 22.281 (i) State or imply ordinates 2, 1.1547, 1, 1.1547 Use correct formula, or equivalent, with h = 1/6 π and four ordinates Obtain answer 1.95 (ii) Make recognisable sketch of y = cosec x for the given interval Justify a statement that the estimate will be an overestimate Substitute x = -1/3, equate result to zero or divide by 3x + 1 and equate the remainder to zero and obtain a correct equation, e.g1/27 a + 1/9 b - 1/3 + 3 = 0 Substitute x = 2 and equate result to 21 or divide by x - 2 and equate constant remainder to 21 Obtain a correct equation, e.g. 8a + 4b + 5 = 21 Solve for a or for b Obtain a = 12 and b = -20 (i) Use chain rule correctly at least once Obtain either dx/dt = 3sint/dt / cos²t/dt = 3tan²/tsec²t, or equivalent Use dy/dx = dy/dt + dx/dt Obtain the given answer (ii) State a correct equation for the tangent in any form Use Pythagoras Obtain the given answer (i) Substitute z = 1 + i and obtain w = 1+2i/1+i EITHER: Multiply numerator and denominator by the conjugate of the denominator, or equivalent Simplify numerator to 3 + i or denominator to 2 Obtain final answer 3/2 + 1/2 i, or equivalent OR: Obtain two equations in x and y, and solve for x or for y Obtain x = 3/2 or y = 1/2, or equivalent 	Obtain answer $x = 22.281$ (i) State or imply ordinates 2, 1.1547, 1, 1.1547 B1 Use correct formula, or equivalent, with $h = \frac{1}{6}\pi$ and four ordinates M1 Obtain answer 1.95 A1 (ii) Make recognisable sketch of $y = \csc x$ for the given interval Justify a statement that the estimate will be an overestimate B1 Substitute $x = -\frac{1}{3}$, equate result to zero or divide by $3x + 1$ and equate the remainder to zero and obtain a correct equation, e.g. $-\frac{1}{27}a + \frac{1}{9}b - \frac{1}{3} + 3 = 0$ Substitute $x = 2$ and equate result to 21 or divide by $x - 2$ and equate constant remainder to 21 M1 Obtain a correct equation, e.g. $8a + 4b + 5 = 21$ A1 Solve for a or for b M1 Obtain $a = 12$ and $b = -20$ A1 (i) Use chain rule correctly at least once Obtain either $\frac{dx}{dt} = \frac{3\sin t}{\cos^2 t}$ or $\frac{dy}{dt} = 3\tan^2 \sec^2 t$, or equivalent Use $\frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt}$ M1 Obtain the given answer A1 (ii) State a correct equation for the tangent in any form Use Pythagoras Obtain the given answer A1 (i) Substitute $z = 1 + i$ and obtain $w = \frac{1+2i}{1+i}$ B1 EITHER: Multiply numerator and denominator by the conjugate of the denominator, or equivalent Simplify numerator to $3 + i$ or denominator to 2 A1 Obtain final answer $\frac{3}{2} + \frac{1}{2}i$, or equivalent Simplify numerator to $3 + i$ or denominator to 2 A1 Obtain two equations in x and y , and solve for x or for y M1 Obtain $x = \frac{3}{2}$ or $y = \frac{1}{2}$, or equivalent A1

Mark Scheme

Syllabus

Paper

Page 4

Page 5		Mark Scheme Sy	llabus	Pape	er
	Cambridge International A Level – October/November 2014 970			32	
(;;)	EITLIED.	Substitute w = z and obtain a 2 term quadratic equation in z			
(11)	EITHER:	Substitute $w = z$ and obtain a 3-term quadratic equation in z ,		D.1	
		e.g. $iz^2 + z - i = 0$.at	B1	
		Solve a 3-term quadratic for z or substitute $z = x + iy$ and use a corremethod to solve for x and y	cı	M1	
	OR:	Substitute $w = x + iy$ and obtain two correct equations in x and y by	equating		
	OR.	real and imaginary parts	equating	B1	
		Solve for x and y		M1	
		-			
	Obtain a con	rrect solution in any form, e.g. $z = \frac{-1 \pm \sqrt{3} \text{ i}}{2\text{i}}$		A1	
		21			
	Obtain final	answer $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$		A1	[4
		2 2			
		c 1			
(i)	Integrate an	d reach $bx\ln 2x - c\int x \cdot \frac{1}{x} dx$, or equivalent		M1*	
	Obtain $x \ln 2$.	$x - \int x \cdot \frac{1}{x} dx$, or equivalent		A 1	
		χ		A 1	
	_	$\frac{1}{2} \sin 2x - x$, or equivalent mits correctly and equate to 1, having integrated twice	M1(A1 dep*)	
		rect equation in any form, e.g. $a \ln 2a - a + 1 - \ln 2 = 1$	WH	A1	
		given answer		A1	[0
	Obtain the g	iven answer		711	Į
(ii)	Use the itera	ative formula correctly at least once		M1	
		answer 1.94		A1	
		ient iterations to 4 d.p. to justify 1.94 to 2d.p. or show that there is a significant of the control of the co	gn		_
	change in th	e interval (1.935, 1.945).		A1	[3
(i)	•	riables correctly and attempt to integrate at least one side		B1	
	Obtain term			B1	
	Obtain $\ln x$	-0.5/x constant or use limits $x = 0.5$, $R = 16.8$, in a solution containing terms of	f the for	B1	
	$a \ln R$ and $b \ln R$		i tile ioni	M1	
		ect solution in any form		A1	
		rect expression for <i>R</i> , e.g. $R = xe^{(3.80 - 0.57x)}$, $R = 44.7xe^{-0.57x}$ or			
	$R = 33.6xe^{-0.00}$	(0.285 - 0.57x)		A1	[6
(ii)	E_{quoto} dR	to zoro and solve for r		M1	
(11)	$\frac{1}{dx}$	to zero and solve for x		IVI I	
	State or imn	$x = 0.57^{-1}$, or equivalent, e.g. 1.75		A1	
	_	28.8 (allow 28.9)		A1	[3
(i)	Use sin(A +	B) formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ		M1	
(1)			0	3.61	
(1)	Use correct	double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin \theta$	θ	M1	
(1)		double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of $\sin\theta$ rect expression in terms of $\sin\theta$ in any form	θ	M1 A1	

[SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and $\cos2\theta$,

then M1A1 for expressing in terms of $\sin\theta$ and $\sin3\theta$ only, or in terms

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9709	32

(ii) Substitute for x and obtain the given answer

B1 [1]

[4]

(iii) Carry out a correct method to find a value of x

M1

Obtain answers 0.322, 0.799, -1.12

A1 + A1 + A1

[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

9 (i) State or imply the form $\frac{A}{1-x} + \frac{B}{2-x} + \frac{C}{(2-x)^2}$ B1

Use a correct method to determine a constant

M1

Obtain one of A = 2, B = -1, C = 3

Obtain a second value A1

Obtain a third value A1 [5]

[The alternative form $\frac{A}{1-x} + \frac{Dx + E}{(2-x)^2}$, where A = 2, D = 1, E = 1 is marked

B1M1A1A1A1 as above.]

(ii) Use correct method to find the first two terms of the expansion

of
$$(1-x)^{-1}$$
, $(2-x)^{-1}$, $(2-x)^{-2}$, $(1-\frac{1}{2}x)^{-1}$ or $(1-\frac{1}{2}x)^{-2}$

M1

Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction

 $A1\sqrt{+}A1\sqrt{+}A1\sqrt{-}$

Obtain final answer $\frac{9}{4} + \frac{5}{2}x + \frac{39}{16}x^2$, or equivalent

A1 **[5]**

[Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for M1. The \checkmark is on A,B,C.]

[For the A,D,E form of partial fractions, give M1 A1 \checkmark A1 \checkmark for the expansions then, if $D \neq 0$, M1 for multiplying out fully and A1 for the final answer.]

[In the case of an attempt to expand $(x^2 - 8x + 9)(1 - x)^{-1}(2 - x)^{-2}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]

10 (i) EITHER: Find \overrightarrow{AP} (or \overrightarrow{PA}) for a point P on l with parameter λ ,

e.g.
$$i - 17j + 4k + \lambda(-2i + j - 2k)$$

B1

Calculate scalar product of \overrightarrow{AP} and a direction vector for l and equate to zero M1 Solve and obtain $\lambda = 3$

Carry out a complete method for finding the length of *AP*Obtain the given answer 15 correctly

A1

OR1: Calling (4, -9, 9) B, state \overrightarrow{BA} (or \overrightarrow{AB}) in component form, e.g. $-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}$ B1

Calculate vector product of \overrightarrow{BA} and a direction vector for l,

e.g. $(-\mathbf{i} + 17\mathbf{j} - 4\mathbf{k}) \times (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$ M1

Obtain correct answer, e.g. $-30\mathbf{i} + 6\mathbf{j} + 33\mathbf{k}$ A1

Divide the modulus of the product by that of the direction vector

Obtain the given answer correctly

A1

OR2: State \overrightarrow{BA} (or \overrightarrow{AB}) in component form

Use a scalar product to find the projection of BA (or AB) on l M1

Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}}$

Use Pythagoras to find the perpendicular M1

Page 7	Mark Scheme	Syllabus	Pape	r
	Cambridge International A Level – October/November 2014	9709	32	
	Obtain the given anguer compaths		A 1	
_	Obtain the given answer correctly		A1	
ϵ	PR3: State BA (or AB) in component form		B1	
	Use a scalar product to find the cosine of <i>ABP</i>		M1	
	Obtain correct answer in any form, e.g. $\frac{27}{\sqrt{9}.\sqrt{306}}$		A1	
	Use trig. to find the perpendicular		M1	
	Obtain the given answer correctly		A1	
\mathcal{C}	$\overrightarrow{DR4}$: State \overrightarrow{BA} (or \overrightarrow{AB}) in component form		B1	
	Find a second point C on l and use the cosine rule in triangle Al	BC to find the		
	cosine of angle A, B, or C, or use a vector product to find the are		M1	
	Obtain correct answer in any form		A1	
	Use trig. or area formula to find the perpendicular		M1	
	Obtain the given answer correctly		A1	
C	State correct AP (or PA) for a point P on l with parameter λ in	any form	B1	
	Use correct method to express AP^2 (or AP) in terms of λ		M1	
	Obtain a correct expression in any form,			
	e.g. $(1-2\lambda)^2 + (-17+\lambda)^2 + (4-2\lambda)^2$		A1	
	Carry out a method for finding its minimum (using calculus, alg	-		
	or Pythagoras)		M1	
	Obtain the given answer correctly		A1	[5]
(ii)	EITHER: Substitute coordinates of a general point of l in equation of p			
	equate constant terms or equate the coefficient of λ to zero, of		F 4 -1-	
	equation in a and b	N	/11*	
	Obtain a correct equation, e.g. $4a-9b-27+1=0$ Obtain a second correct equation, e.g. $-2a+b+6=0$		A1 A1	
	Solve for a or for b	M1(de		
	Obtain $a = 2$ and $b = -2$	•	A1	
\mathcal{C}	<i>PR</i> : Substitute coordinates of a point of <i>l</i> and obtain a correct equation			
	e.g. $4a - 9b = 26$,	B1	
	EITHER: Find a second point on l and obtain an equation in	a and b	11 *	
	Obtain a correct equation		A1	
	OR: Calculate scalar product of a direction vector for 1:		# 1 ·b	
	normal to the plane and equate to zero		/11*	
	Obtain a correct equation, e.g. $-2a + b + 6 = 0$ Solve for a or for b	M1(de	A1	
	Obtain $a = 2$ and $b = -2$	•	A1	[5]
	Obtain $u = L$ and $v = -L$		Λ 1	[3]