Cambridge International Advanced Subsidiary Level

MARK SCHEME for the October/November 2015 series

9709 MATHEMATICS

9709/23

Paper 2, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2015	9709	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are
 several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a
 particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme.
 When two or more steps are run together by the candidate, the earlier marks are implied and
 full credit is given.
- The symbol I implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level – October/November 2015	9709	23

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
SOS	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √^k" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Cambridge International AS Level - October/November 20159709231Integrate to obtain $k \ln(2x + 5)$ MIObtain correct $\frac{1}{2} \ln(2x + 5)$ A1Apply limits and use logarithm law for $\ln a - \ln b$ MIUse logarithm power lawMIObtain 125A12(i)EitherState or imply non-modulus equation $(2x + 3)^2 = (x + 8)^2$ or corresponding pair of linear equations Solve 3-term quadratic equation or 2 linear equations Obtain $x = -\frac{11}{4}$ and $x = 5$ OrObtain $x = -\frac{11}{4}$ and $x = 5$ OrObtain $x = -\frac{11}{4}$ similarlyB1Obtain $x = -\frac{11}{4}$ similarlyG1Use logarithms to solve equation of form $2^y = k$ where $k > 0$ Obtain $\frac{dx}{dt} = e^t + (t + 1)e^t$ or equivalentGbtain $\frac{dy}{dt} = t(t + 4)^{-\frac{1}{4}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentObtain $\frac{3x}{4} + 45 = 0$ or equivalent of required formA1Obtain all quotient $3x^2 + 11x$ Obtain complete quotient $3x^2 + 11x$ Obtain all quotient $3x^2 + 11x + 20$ with no errors seenCalculate discriminant of quadratic factor or equivalentObtain -119 or equivalent of negative or equivalentM1Obtain -119 or equivalent of expression of form $k_1e^{3x} + k_2e^x$ M1Obtain -119 or equivalent of expression of form $k_1e^{3x} + k_2e^x$ M1Obtain -119 or equivalent of expression of form $k_1e^{3x} + k_2e^x$ M1Obtain -119 or equivalent of expression of form $k_1e^{3x} + k_2e^x$ M1 <th>Ρ</th> <th>age 4</th> <th>۱<u> </u></th> <th colspan="3">Mark Scheme Syllabus</th> <th>er</th>	Ρ	age 4	۱ <u> </u>	Mark Scheme Syllabus			er
Obtain correct $\frac{1}{2}\ln(2x+5)$ A1Apply limits and use logarithm law for $\ln a - \ln b$ MiUse logarithm power lawMiObtain $\ln 125$ A1(i) EitherState or imply non-modulus equation $(2x+3)^2 = (x+8)^2$ or corresponding pair of linear equations(ii) EitherState or imply non-modulus equation $(2x+3)^2 = (x+8)^2$ or corresponding pair of linear equations(iii) Correct quadratic equation or 2 linear equationsMiObtain $x = -\frac{1}{4}$ and $x = 5$ A1(ii) Use logarithms to solve equation of form $2^r = k$ where $k > 0$ MiObtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalentB1Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentMiObtain $\frac{3x}{4} + 65 = 0$ or equivalent divide for equivalent of tangentMiObtain $3x^2 - 4y + 45 = 0$ or equivalent of required formA1(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ MiObtain configure (x - 2)(3x^2 + 11x + 20) = 0B1(ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1(iii) Cotain $e^{3x} + 5e^x = 10$ B1(iii) Cotain $e^{3x} + 5e^x = 10$ B1 </th <th></th> <th></th> <th></th> <th colspan="2"></th> <th colspan="2"></th>							
Obtain correct $\frac{1}{2}\ln(2x+5)$ A1Apply limits and use logarithm law for $\ln a - \ln b$ MiUse logarithm power lawMiObtain $\ln 125$ A1(i) EitherState or imply non-modulus equation $(2x+3)^2 - (x+8)^2$ or corresponding pair of linear equationsB1Solve 3-term quadratic equation or 2 linear equationsObtain $x = -\frac{11}{3}$ and $x = 5$ OrObtain $x = -\frac{11}{3}$ similarlyB2[2](ii) Use logarithms to solve equation of form $2^{y} = k$ where $k > 0$ Obtain $\frac{dx}{dt} = e^{t} + (t + 1)e^{t}$ or equivalentB1Obtain $\frac{dy}{dt} = t(t + 4)^{-\frac{1}{2}}$ B2Substitute $t = 0$ and divide to obtain gradient of tangentObtain $\frac{3y}{4}$ following their first derivativesForm equation of tangent through $(1, 12)$ Obtain $3x - 4y + 45 = 0$ or equivalent of required form4(i) Attempt division, or equivalent at least as far as quotient $3x^2 + kx$ Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenConfirm remainder is 39B1(ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalentObtain $e^{3x} + 5e^{x} + 5e^{x}$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^{x}$ Obtain $e^{3x} + 5e^{x} + 5e^{x}$ B1Obtain $e^{3x} + 5e^{x} = 106$ or similarly simplified equivalentA1 <th>1</th> <th>Inte</th> <th>grate to o</th> <th>btain $k \ln(2x+5)$</th> <th></th> <th>M1</th> <th></th>	1	Inte	grate to o	btain $k \ln(2x+5)$		M1	
Apply limits and use logarithm law for $\ln a - \ln b$ M1Use logarithm power lawM1Obtain $\ln 125$ A1(i) EitherState or imply non-modulus equation $(2x + 3)^2 = (x + 8)^2$ or corresponding pair of linear equationsof linear equationsB1Solve 3-term quadratic equation or 2 linear equationsM1Obtain $x = -\frac{11}{3}$ and $x = 5$ A1OrObtain $x = -\frac{11}{3}$ and $x = 5$ OrObtain $x = -\frac{11}{3}$ similarly(ii)Use logarithms to solve equation of form $2^{\gamma} = k$ where $k > 0$ Obtain $\frac{dx}{dt} = e^t + (t + 1)e^t$ or equivalentObtain $\frac{dy}{dt} = t(t + 4)^{-\frac{1}{2}}$ B1Substitut $t = 0$ and divide to obtain gradient of tangentObtain $\frac{1}{4}$ following their first derivativesA1Form equation or tangent through $(1, 12)$ Obtain $3x - 4y + 45 = 0$ or equivalent of required form4(i)Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ Obtain complete quotient $3x^2 + 11x$ Obtain optice is 39 (ii)State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalentObtain $e^{3x} + 5e^x$ A1(ii)State or imply $x - 2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalentObtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalentA1Obtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalentA1Obtain $e^{3x} + 5e^x = 106$ or similarly simplifi			-			A1	
2(i) EitherState or imply non-modulus equation $(2x+3)^2 = (x+8)^2$ or corresponding pair of linear equations Solve 3-term quadratic equation or 2 linear equations Obtain $x = -\frac{11}{3}$ and $x = 5$ B1 M1 Obtain $x = -\frac{11}{3}$ and $x = 5$ A1OrObtain $x = 5$ from graphical method, inspection, equation, Obtain $x = -\frac{11}{3}$ similarlyB2[3(ii)Use logarithms to solve equation of form $2^y = k$ where $k > 0$ Obtain $\frac{4x}{dt} = c' + (t+1)c'$ or equivalentB13Obtain $\frac{dx}{dt} = c' + (t+1)c'$ or equivalentB1Obtain $\frac{dy}{dt} = (t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(i)State or imply $(x-2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalentB1(ii)State or imply $(x-2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalent Obtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalent Rearrange and introduce logarithmsM1		App Use	ly limits logarithr	and use logarithm law for $\ln a - \ln b$ n power law		M1	[6]
of linear equationsBI Solve 3-term quadratic equation or 2 linear equationsBI MI Obtain $x = -\frac{11}{3}$ and $x = 5$ OrObtain $x = -\frac{11}{3}$ similarlyB1Obtain $x = -\frac{11}{3}$ similarlyB2(ii) Use logarithms to solve equation of form $2^{\gamma} = k$ where $k > 0$ M1 Obtain 2.323 Obtain $\frac{dx}{dt} = e^{t} + (t+1)e^{t}$ or equivalentB1Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1 Obtain $\frac{3}{4}$ following their first derivativesForm equation of tangent through $(1, 12)$ M1 Obtain $3x - 4y + 45 = 0$ or equivalent of required form4(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1 Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen Confirm remainder is 39(ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalent 		Obta	ain in 125			AI	[5]
Solve 3-term quadratic equation or 2 linear equationsM1 Obtain $x = -\frac{11}{3}$ and $x = 5$ M1 A1 Ωr Obtain $x = 5$ from graphical method, inspection, equation,B1 Obtain $x = -\frac{11}{3}$ similarlyB2(ii)Use logarithms to solve equation of form $2^y = k$ where $k > 0$ M1 Obtain 2.32 A13Obtain $\frac{dx}{dt} = c^t + (t+1)c^t$ or equivalentB1 Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B13Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B14Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i)Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1[c(ii)State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i)Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1	2	(i)	<u>Either</u>		onding pair		
Obtain $x = -\frac{11}{3}$ and $x = 5$ A1 \underline{Or} Obtain $x = 5$ from graphical method, inspection, equation,B1Obtain $x = -\frac{11}{3}$ similarlyB2[2](ii) Use logarithms to solve equation of form $2^y = k$ where $k > 0$ M1Obtain 2.32 A1[2]3Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalentB1Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain normplet quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentA1Obtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsA1				-			
OrObtain $x = 5$ from graphical method, inspection, equation,B1 Obtain $x = -\frac{11}{3}$ similarly(i)Use logarithms to solve equation of form $2^{\gamma} = k$ where $k > 0$ M1 Obtain 2.323Obtain $\frac{dx}{dt} = e^{t} + (t+1)e^{t}$ or equivalentB1 0 butain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1 Obtain $\frac{3}{4}$ following their first derivativesForm equation of tangent through $(1, 12)$ M1 Obtain $3x - 4y + 45 = 0$ or equivalent of required form4(i)Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ Obtain complete quotient $3x^2 + 11x$ A1 Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen Confirm remainder is 39(ii)State or imply $(x-2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalent Obtain -119 or equivalent and confirm only one real root5(i)Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ 6(i)Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ 6(i)Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ 7(ii)Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ 81 Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ 91 Apply both limits and nordinary simplified equivalent Rearrange and introduce logarithms							
Obtain $x = -\frac{11}{3}$ similarlyB2[2](ii) Use logarithms to solve equation of form $2^y = k$ where $k > 0$ M1 Obtain 2.32M1 A13Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalentB1 Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B13Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B14Substitute $t = 0$ and divide to obtain gradient of tangentM1 M1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1 M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1 A1 Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen Confirm remainder is 39B1 B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ Calculate discriminant of quadratic factor or equivalent Obtain -119 or equivalent and confirm only one real rootB1 A1 A15(i) Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ B1 Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$			Or				
(i)Use logarithms to solve equation of form $2^y = k$ where $k > 0$ M1 Obtain 2.32M1 A13Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalentB1Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i)Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain complete quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B16(i)State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i)Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3x} + 5e^x = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1			<u>Or</u>				[3]
Obtain 2.32A1[2]3Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalentB1Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain omplete quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Kearrange and introduce logarithmsM1				Solution $x = -\frac{1}{3}$ similarly		D2	[3]
3 Obtain $\frac{dx}{dt} = e^t + (t+1)e^t$ or equivalent B1 Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1 Substitute $t = 0$ and divide to obtain gradient of tangent M1 Obtain $\frac{3}{4}$ following their first derivatives A1 Form equation of tangent through $(1, 12)$ M1 Obtain $3x - 4y + 45 = 0$ or equivalent of required form A1 4 (i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1 Obtain complete quotient $3x^2 + 11x$ A1 Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen A1 (ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1 (iii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1 (i) Integrate to obtain $e^{3x} + 5e^x$ B1 Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1 Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalent A1 Rearrange and introduce logarithms M1		(ii)	-	-			503
Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1,12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1			Obtain 2	2.32		Al	[2]
Obtain $\frac{dy}{dt} = t(t+4)^{-\frac{1}{2}}$ B1Substitute $t = 0$ and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through $(1, 12)$ M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1	3	Obta	ain $\frac{\mathrm{d}x}{\mathrm{d}x} =$	$e^{t} + (t+1)e^{t}$ or equivalent		B1	
SubstitutI = 0 and divide to obtain gradient of tangentM1Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through (1,12)M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA1(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x - 2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA1(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3u} + 5e^u = 106$ or similarly simplified equivalentA1M1M1M1							
Obtain $\frac{3}{4}$ following their first derivativesA1Form equation of tangent through (1,12)M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA1(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA1(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1M1M1		Obta	$ain \frac{dy}{dt} =$	$t(t+4)^{-2}$		B 1	
Form equation of tangent through (1,12)M1Obtain $3x - 4y + 45 = 0$ or equivalent of required formA14(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1							
Obtain $3x - 4y + 45 = 0$ or equivalent of required formA1[f4(i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1			•				
4 (i) Attempt division, or equivalent, at least as far as quotient $3x^2 + kx$ M1 Obtain partial quotient $3x^2 + 11x$ A1 Obtain complete quotient $3x^2 + 11x + 20$ with no errors seen A1 Confirm remainder is 39 B1 (ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1 Calculate discriminant of quadratic factor or equivalent M1 Obtain -119 or equivalent and confirm only one real root A1 5 (i) Integrate to obtain $e^{3x} + 5e^x$ B1 Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1 Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalent Rearrange and introduce logarithms A1			-				
Obtain partial quotient $3x^2 + 11x$ A1Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1M1M1M1M1		Obta	$a_{11} 3x - 4$	4y + 45 = 0 or equivalent of required form		Al	[6]
Obtain complete quotient $3x^2 + 11x + 20$ with no errors seenA1 B1Confirm remainder is 39B1(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1 Calculate discriminant of quadratic factor or equivalent Obtain -119 or equivalent and confirm only one real rootB15(i) Integrate to obtain $e^{3x} + 5e^x$ B1 Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ B1 M1 Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalent Rearrange and introduce logarithmsA1 M1	4	(i)	_			M1	
Confirm remainder is 39B1[4](ii) State or imply $(x-2)(3x^2+11x+20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1			1	1			
(ii) State or imply $(x-2)(3x^2 + 11x + 20) = 0$ B1Calculate discriminant of quadratic factor or equivalentM1Obtain -119 or equivalent and confirm only one real rootA15(i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1							Г 4 Л
Calculate discriminant of quadratic factor or equivalent Obtain -119 or equivalent and confirm only one real rootM1 A15(i) Integrate to obtain $e^{3x} + 5e^x$ Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ B1 M1 Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalent Rearrange and introduce logarithmsA1 M1			Confirm	remainder is 39		BI	[4]
Obtain -119 or equivalent and confirm only one real rootA1[3]5 (i) Integrate to obtain $e^{3x} + 5e^x$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1		(ii)				B 1	
5 (i) Integrate to obtain $e^{3x} + 5e^{x}$ B1Apply both limits and subtract for expression of form $k_1e^{3x} + k_2e^{x}$ M1Obtain $e^{3a} + 5e^{a} = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1							[2]
Apply both limits and subtract for expression of form $k_1 e^{3x} + k_2 e^x$ M1Obtain $e^{3a} + 5e^a = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1			Obtain –	-119 of equivalent and confirm only one real root		AI	[3]
Obtain $e^{3a} + 5e^{a} = 106$ or similarly simplified equivalentA1Rearrange and introduce logarithmsM1	5	(i)	•				
Rearrange and introduce logarithms M1				· -		M1	
Confirm given answer $a = \frac{1}{3} \ln(106 - 5e^{-1})$ AI							۲ <i>۳</i> ٦
			Confirm	given answer $a = \frac{1}{3} \ln(100 - 5e^{-1})$		AI	[5]

Page 5		Mark Scheme		Paper	
		Cambridge International AS Level – October/November 2015	9709	23	
		Use the iterative formula correctly at least once Obtain final answer 1.477 Show sufficient iterations to justify accuracy to 3 d.p. or show sign change in i (1.4765, 1.4775)	interval	M1 A1 A1	[3]
6		State or imply $R = 3$ Use appropriate formula to find α Obtain 41.81°		B1 M1 A1	[3]
	(ii)	 (a) Attempt to find one correct value of θ + α Obtain one correct value (30.7 or 245.6) of θ Carry out correct method to find second answer Obtain second correct answer and no others in range 		M1 A1 M1 A1	[4]
		(b) State greatest value is 13, following their value of <i>R</i>State least value is 7, following their value of <i>R</i>		B1 B1	[2]
7	(i)	Use quotient rule or equivalent to find first derivative Obtain $\frac{2\cos 2x(\cos x + 1) + \sin 2x \sin x}{(\cos x + 1)^2}$ or equivalent		M1 A1	
		Use at least one of $\cos 2x = 2\cos^2 x - 1$ and $2x = 2\sin x \cos x$ Express first derivative in terms of $\cos x$ only		B1 M1	
		Obtain $\frac{2\cos^3 x + 4\cos^2 x - 2}{(\cos x + 1)^2}$ or equivalent		A1	
		Factorise numerator or divide numerator by $(\cos x + 1)$ or equivalent		M1	
		Confirm given answer $\frac{2(\cos^2 x + \cos x - 1)}{\cos x + 1}$ correctly		A1	[7]
		Use quadratic formula or equivalent to find value of cosx Obtain x-coordinate 0.905		M1 A1	

Obtain x-coordinate -0.905 and no others in range

A1 [3]