CAMBRIDGE INTERNATIONAL EXAMINATIONS MMM. Hiremepapers.com

## **NOVEMBER 2002**

## **INTERNATIONAL GCSE**





UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

| Page 1 of 5 | Mark Scheme                        | Syllabus | Paper |
|-------------|------------------------------------|----------|-------|
|             | IGCSE Examinations – November 2002 | 0620     | 3     |

In the mark scheme if a word or phrase is underlined it(or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

**COND** indicates that the award of this mark is conditional upon a previous mark being gained.

• Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.

| 1 | (a) | (i)   | vanadium(V) oxide as catalyst - ignore oxidation state<br>and accept no oxidation state<br>temperature 300 to 600 °C<br>pressure up to 10 atmos, accept atmospheric pressure<br>volume ratio of gases either 2:1 or slight excess of oxyge<br>ANY three | en<br>[3]              |
|---|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|   |     | (ü)   | decrease<br>COND back reaction is endothermic or same argument<br>forward reaction is exothermic<br>or increase in temp favours back reaction                                                                                                           | [1]<br>based on<br>[1] |
|   |     | (iii) | dissolve in (conc) sulphuric acid NOT dilute add water or dilute                                                                                                                                                                                        | [1]<br>[1]             |
|   | (b) |       | sodium hydroxide or carbonate or hydrogencarbonate                                                                                                                                                                                                      | 613                    |
|   |     |       | zinc oxide or hydroxide or carbonate<br>NOT zinc                                                                                                                                                                                                        | [1]<br>[1]             |
|   |     |       | barium nitrate or chloride or hydroxide or barium ions                                                                                                                                                                                                  | [1]                    |
|   |     |       | neutralisation NOT acid/base                                                                                                                                                                                                                            | [1]                    |
|   | (c) | (i)   | copper sulphate or anhydrous copper sulphate<br>accept "unhydrated"<br>NOT formula                                                                                                                                                                      | [1]                    |
|   |     | (ii)  | goes blue or becomes hot or steam                                                                                                                                                                                                                       | [1]                    |
|   |     | (iii) | copper oxide                                                                                                                                                                                                                                            | [1]                    |

| Page 2 of | 5     | Mark Scheme Sy   IGCSE Examinations – November 2002 (                                                                                                                                                   |                   | Paper<br>3 |
|-----------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
|           |       |                                                                                                                                                                                                         |                   |            |
|           | NB    | 5/250 = 0.02 moles<br>Mr = 80<br>$80 \ge 0.02 = 1.6$ g<br>(iv) to be marked <b>conseq</b> to (iii)<br>rect answer no working <b>ONLY</b> [1]                                                            | [1]<br>[1]<br>[1] |            |
| TOTAL     | = 1   | 7                                                                                                                                                                                                       |                   |            |
| 2 (a)     | (i)   | high densities<br>high fixed points mp or bp<br>coloured compounds<br>hardness<br>complex ions                                                                                                          |                   |            |
|           |       | ANY three                                                                                                                                                                                               | [3]               |            |
|           | (ii)  | 13                                                                                                                                                                                                      | [1]               |            |
| (b)       | (i)   | manganese chloride<br>water                                                                                                                                                                             | [1]<br>[1]        |            |
|           | (ii)  | manganese(III) and (IV) oxides                                                                                                                                                                          | [1]               |            |
| (c)       | (i)   | rate decreases or becomes zero<br>do NOT accept rate increases then decreases                                                                                                                           | [1]               | <b>Š</b>   |
|           |       | COND concentration decreases<br>hydrogen peroxide used up ONLY [1]                                                                                                                                      | [2]               |            |
|           | (ii)  | steeper initial gradient<br>double final volume                                                                                                                                                         | [1]<br>[1]        |            |
|           | (iii) | initial gradient less<br>final volume the same<br>must relate to shape of graph                                                                                                                         | [1]<br>[1]        |            |
| TOTAL     | = 1   | 4                                                                                                                                                                                                       |                   |            |
| 3 (a)     | (i)   | number of outer electrons increases<br>or number of electrons more than complete energy leve<br>or number of electrons to be lost<br>or accept clear examples<br>NOT just different groups or valencies | [1]<br>1          |            |
|           | (ii)  | gain electrons<br>number of electrons to be gained is less across period                                                                                                                                | [1]<br>[1]        |            |
|           |       | or number of outer electrons increases                                                                                                                                                                  |                   |            |

| Page 3 of 5 |                    | Mark Scheme                                                                                                                                                                | Syllabus   | Paper                                   |
|-------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|
|             |                    | IGCSE Examinations – November 2002                                                                                                                                         | 0620       | 3                                       |
|             |                    |                                                                                                                                                                            |            |                                         |
| (b)         |                    | Al <sub>2</sub> S <sub>3</sub><br>Si <sub>3</sub> P <sub>4</sub>                                                                                                           | [1]<br>[1] |                                         |
| (c)         | (i)                | silicon                                                                                                                                                                    | [1]        |                                         |
|             | (ii)               | sodium                                                                                                                                                                     | [1]        | -                                       |
|             | (iii) <sup>•</sup> | sulphur or chlorine                                                                                                                                                        | [1]        |                                         |
| (d)         |                    | unreactive or inert or does not react                                                                                                                                      | [1]        |                                         |
| (e)         | ·                  | 3Na to 1P<br>COND next two marks                                                                                                                                           | [1]        | • • • • • • • • • • • • • • • • • • • • |
|             |                    | correct charges                                                                                                                                                            | · [1]      |                                         |
|             |                    | 8e around P                                                                                                                                                                | [1]        |                                         |
|             |                    | If covalent then only one mark for 3Na to 1P                                                                                                                               |            |                                         |
| (f)         | (i)                | 11.5/23 = 0.5                                                                                                                                                              | [1]        |                                         |
|             | (ii)               | 0.25<br>conseq to (i)                                                                                                                                                      | [1]        |                                         |
|             | (iii)              | $0.25 \times 32 = 8 \text{ g}$<br>conseq                                                                                                                                   | [1]        | . е <b>б</b> .                          |
|             | (iv)               | 2.0 g<br>only <b>conseq</b> to (iii) if answer to (iii) is less than 10                                                                                                    | [1]        |                                         |
|             |                    | NB If (ii) is 0.3(125), no excess is possible, (iv) ZE                                                                                                                     | RO         |                                         |
| TOTAL       | = 1                | 6                                                                                                                                                                          |            |                                         |
| 4 (a)       | (i)                | wiring NOT good conductor<br>pipes<br>utensils<br>roofs<br>electroplating<br>lightning conductor<br>bi-metallic strips<br>NOT coinage metal or any other use than involves | an alloy   |                                         |
|             |                    | TWO from above                                                                                                                                                             | [2]        | . *                                     |

| Page 4 of 5                            | Mark Scheme                        | Syllabus | Paper |
|----------------------------------------|------------------------------------|----------|-------|
| ······································ | IGCSE Examinations – November 2002 | 0620     | 3     |

|      |     | (ii)  | regular array<br>different sizes<br>delocalised <b>or</b> mobile <b>or</b> free electrons                                       | [1]<br>[1]<br>[1] |               |
|------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| (    | (b) | (i)   | copper deposited or mass increases                                                                                              | [1]               |               |
|      |     | (ii)  | copper goes into solution or mass decreases                                                                                     | [1]               |               |
|      |     | (iii) | $Cu^{2+} + 2e^{$                                                                                                                | [1]               |               |
|      | ·   | (iv)  | oxygen<br>sulphuric acid accept hydrogen sulphate                                                                               | [1]<br>[1]        |               |
| (    | (c) | (ii)  | cells produce electricity <b>or</b> exothermic <b>or</b> change<br>chemical energy into electrical energy                       | [1]               |               |
|      |     |       | electrolysis uses it or endothermic or change electrical energy into chemical energy                                            | [1]               |               |
| (    | (d) | (i)   | $CuO + C \implies Cu + CO$<br>or 2CuO + C \implies 2 Cu + CO <sub>2</sub><br>or any other correct reductant – hydrogen or metal | [1]               |               |
|      |     | (ii)  | Copper(II) hydroxide = copper oxide + water [1<br>accept symbols                                                                | ]                 | . <b>4</b> ji |
|      |     | (iii) | $2Cu(NO_3)_2 = 2CuO + 4NO_2 + O_2$<br>unbalanced ONLY [1]<br><b>NOT</b> word equation                                           | [2]               |               |
| TOTA | AL  | = 10  | -                                                                                                                               |                   |               |
| 5 (  | (a) |       | molecular formula<br>Must be able to give isomers, need not be alkenes                                                          | [1]               |               |
|      |     |       | two <u>corresponding</u> isomers<br>If do not correspond then MAX [2] out of [3]                                                | [2]               |               |
| (    | (b) | (i)   | ethanol<br>structure                                                                                                            | [1]<br>[1]        |               |
|      |     | (ii)  | ethane<br>structure                                                                                                             | [1]<br>[1]        |               |
| (    | (c) | (i)   | many simple molecules or monomers<br>form one large one or macromolecule or chain                                               | [1]<br>[1]        |               |

| Page 5 of 5 | Mark Scheme                        | Syllabus | Paper |
|-------------|------------------------------------|----------|-------|
|             | IGCSE Examinations – November 2002 | 0620     | 3     |

|     | (ii)  | addition polymer only one product- the polymer condensation - polymer and water etc                                                                                        | [1]<br>[1] |   |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|
|     | (iii) | correct unit<br>COND evidence of polymer in structure eg shows<br>continuation such as terminal bonds                                                                      | [1]        | • |
|     |       |                                                                                                                                                                            | [1]        |   |
|     |       |                                                                                                                                                                            |            |   |
| (d) | (i)   | water proof or impervious or flexible or<br>good adhesion or non-biodegradable or unreactive                                                                               | [1]        |   |
|     | (ii)  | steel in contact with water or air                                                                                                                                         | [1]        |   |
|     | (iii) | zinc more reactive<br>oxygen /water reacts with zinc not iron<br>sacrificial protection<br>zinc anodic<br>steel receives electrons from zinc<br>zinc forms cations<br>cell | [3]        |   |
|     |       | TWO valid points                                                                                                                                                           | [3]        |   |

ı,

TOTAL = 17