UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/02

Paper 2

May/June 2004

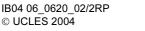
1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

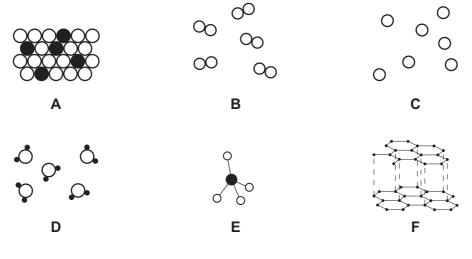
Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.


The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

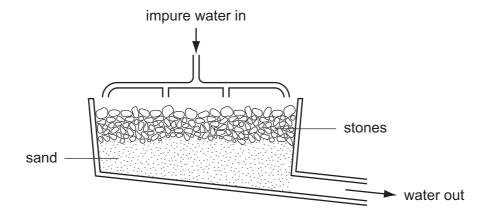
If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.


For Examir	For Examiner's Use		
1			
2			
3			
4			
5			
6			
Total			

This document consists of **16** printed pages.

1 The diagram shows models of various structures,



(a)	Wh	ich three of the structures A to F represent elements? Give a reason for your ans	wer.
	stru	uctures	
	rea	son	[2]
(b)	Wh	ich one of the structures A to F represents a gas containing single atoms?	
			[1]
(c)	(i)	Which one of the structures A to F represents a gas containing diatomic molecule	es?
	(ii)	State the name of a gas which has diatomic molecules.	
			[2]
(d)	(i)	Which one of the structures A to F represents graphite?	
	(ii)	State one use of graphite.	
			[2]

(e)	Stru	ucture D represe	ents a compound.				
	(i)	State what is m	neant by the term com	npound.			
	(ii)	Which one of the	ne following substanc	es is structı	ure E most like	elv to represer	nt?
	()		nd the correct answer			,,	
		ammonia			methane	water	[2]
(5)			hydrogen chlorid	ue	memane	water	[4]
(f)	Нус	drogen chloride i	s a compound.				
	(i)	Draw a diagran chloride.	n to show how the ele	ectrons are	arranged in a	molecule of h	ydrogen
		Show only the	outer electrons.				
						drogen electro	
					0		
							[2]
	(ii)	State the name	of the type of bondin	ıg present iı	n hydrogen ch	nloride.	
							[1]
	/:::\	Lludragan abla	eida diagalyaa in wata				
	(iii)		ride dissolves in wate /ou would use litmus				
							[2]
	(ivA	Which one of				ont the nH of	
	(iv)	solution of hydi	the following values rochloric acid?	is iiiUSt iiKi	ely to represe	ык ин с рп ОГ	a ullul u
		Put a ring arou	nd the correct answer	r.			
		pH 2	pH7	pH10		pH14	[1]

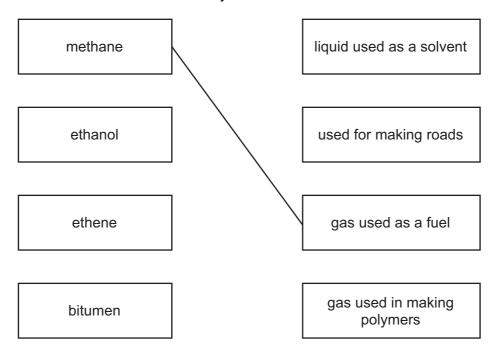
(v)	Comple magnes		following	equation	for	the	reaction	of	hydrochloric	acid	with
	Mg(s)	+	HC1	(aq) -	\rightarrow	Mg(C <i>l</i> ₂(aq)	+	H ₂ (g)		[1]
(vi)	Name th	he salt f	ormed in th	nis reactio	n.						
											[1]

2 Two of the stages in water purification are filtration and chlorination. The diagram below shows a filter tank.

(a)	Exp	plain how this filter helps purify the water.	
			[2]
(b)	(i)	Why is chlorine added during water purification?	
	(ii)	After chlorination, the water is acidic. A small amount of slaked lime is added to acidic water. Explain why slaked lime is added.	the
	(iii)	What is the chemical name for slaked lime?	
	(iv)	State one other use of slaked lime.	[4]

(c)	(i)	State the I	boiling	point of	pure water						
											[2]
	(ii)	Describe a	a chen	nical test	for water.						
		test									[1]
		result									[1]
	(iii)	State one	use o	f water in	the home						
											[1]
(d)	The	diagram s	hows	the arran	gement of	particles in t	he thre	e differe	nt states	of water	r.
		Α				В			С		
	Whi	ch of these	e diagr	ams, A , I	B or C , sho	ows water in	a solid	state?			
						**********					[1]
(e)		am reacts v	with et	hene in t	he presend	ce of a cataly	/st. Cor	nplete th	e word e	quation	for
	ethe	ene	+	steam	\rightarrow						[1]
(f)	Pota	assium rea	cts vio	lently wit	h water. C	omplete the	word e	quation f	or this re	action.	
	pota	assium	+	water	\rightarrow			+			
											[2]

3


	eased.	or oarc	din Carbone	ito roa	ct with hydro	ornono	acia, can	JOIT GI	JAIGO GGS	10
	CaCO ₃ (s)	+	2HC <i>l</i> (aq)	\rightarrow	CaCl ₂ (aq)	+	CO ₂ (g)	+	$H_2O(I)$	
(a)			ical method f	or inve	estigating this	reactio	on, which w	ould e	nable you	to

										[4]
(b)			ne following h		n the rate of the	e react	ion?			
	(ii) adding	g wate	r to the acid							
	(iii) using	powde	red calcium o	carbona	ate instead of	lumps				[0]
										[3]
(c)	Describe a	a test fo	or calcium ior	ıs.						
	result									
	test						***************************************		***************************************	
										[3]

(d)	Calcium can be obtained by the electrolysis of molten calcium chloride.						
	(i)	Suggest why calcium must be extracted by electrolysis rather than by reduction with carbon.	on				
			[1]				
	(ii)	Draw the electronic structure of an atom of calcium					

[2]

[3]

- 4 Organic substances have many uses.
 - (a) Match the substances in the boxes on the left with the descriptions in the boxes on the right. The first one has been done for you.

(b) Which one of the following would be least likely to be obtained from the fractional distillation of petroleum? Put a ring around the correct answer.

bitumen ethane ethanol methane [1]

[2]

(c) Some reactions of organic compounds are shown below.

A
$$n CH_2=CH_2 \longrightarrow (-CH_2-CH_2-)_n$$

B
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

C
$$C_6H_{12}O_6$$
 \longrightarrow $2CO_2 + 2C_2H_5OH$ glucose

D
$$C_8H_{18}$$
 \longrightarrow $C_6H_{14} + C_2H_4$

(i)	Which one of the reactions, A , B , C or D , shows fermentation?

(ii)	Which one of the reactions, A , B , C or D , shows polymerization?	

(iii)	Which one of the reactions, A , B , C or D , shows combustion?	

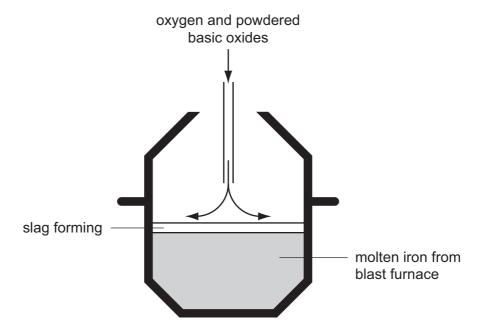
Which one of the reactions, A, B, C or D, shows cracking?	

(d)	The hydrocarbon C ₈ H ₁₈ is an alkane.	

- (i) What is meant by the term *hydrocarbon*?
- (ii) Explain why this hydrocarbon is an alkane.

(iv)

5 Look at the list of five elements below.


argon bromine chlorine iodine potassium

		potassium	
(a)	Put	these five elements in order of increasing proton number.	
		[1]
(b)	Put	these five elements in order of increasing relative atomic mass.	
		[⁻	1]
(c)		e orders of proton number and relative atomic mass for these five elements are erent. Which one of the following is the most likely explanation for this?	e
	Tick	c one box.	
	The	e proton number of a particular element may vary.	
	The	e presence of neutrons.	
	The	e atoms easily gain or lose electrons.	
		e number of protons must always equal the number of utrons.	
		[1	1]
(d)	Wh	ich of the five elements in the list are in the same group of the Periodic Table?	
		[1]
(e)	(i)	From the list, choose one element which has one electron in its outer shell.	
			1]
	(ii)	From the list, choose one element which has a full outer shell of electrons.	
		[1]

(f)	Wh	ich two of the following statements about argon are correct?						
	Ticl	k two boxes.						
	Arg	on is a noble gas.						
	Arg	on reacts readily with potassium.						
	Arg	on is used to fill weather balloons.						
	Arg	on is used in light bulbs.						
				[2]				
(g)		assium chloride can be made by reacting potassium with chloride is ionic	orine. The bonding	in				
	-	assium chloride is ionic.						
	Wh	at does this information tell you about						
	(i)	the boiling point of potassium chloride,						
				[1]				
(ii) the electrical conductivity of realter restauring ablanted								
	(ii)	the electrical conductivity of molten potassium chloride?						
			***************************************	[1]				
	_							
(h)		scribe the change in the electronic structure of potassium and y combine to make potassium chloride.	chlorine atoms who	en				
	cha	nge in potassium atom						
	CHE	nge in potassium atom						
	oho	nge in chlorine atom						
	CHa	rige in chionne atom						
			I	[2]				

as a source of heat.												
(a)	a) The coke burns in hot air. The equation for this reaction is											
	2C(s)	+	O ₂ (g)	\rightarrow	2CO(g)							
	State the r	name	of the gas	produced	d in this read	ction.						
								[1]				
(b)	Near the to	op of t	the blast fu	rnace, th	e iron(III) o	xide in the	e iron ore gets r	reduced to iron.				
	$Fe_2O_3(s)$	+	3CO(g)	\rightarrow	2Fe(I)	+	3CO ₂ (g)					
	Use the e reaction.	quatio	on to expla	ain why 1	the change	of iron(II	II) oxide to iror	n is a reduction				
								[1]				
(c)			gions of the quation for		. ,	kide is red	luced by carbor	١.				
	Fe ₂ O ₃ (s)	+	C(s)	\rightarrow	Fe((I) +	3CO(g)	[2]				

(d) The iron from the blast furnace contains up to 10% by mass of impurities. The main impurities are carbon, silicon and phosphorus. The diagram below shows one method of making steel from iron.

A mixture of oxygen and basic oxides is blown onto the surface of the molten iron.

(i)	What is the purpose of blowing oxygen onto the molten iron?	
(ii)		[1]
(,	What name is given to chemical reactions which release energy?	
		[1]
iii)	The basic oxides react with the impurities in the iron and form a slag. Wh information in the diagram suggests that the slag is less dense than the molterion?	
		[1]
iv)	Which one of the following is a basic oxide? Put a ring around the correct answer.	
	calcium oxide carbon dioxide sulphur dioxide water	[1]
(v)	Why is steel rather than iron used for constructing buildings and bridges?	
	I	[1]

(e)	Special steels contain added elements such as vanadium, chromium, cobalt or nickel. These are all transition metals.								
	State three properties of transition metals which are not shown by non-transit metals.	ion							
	1.								
	2.								
	3	[3]							
(f)	What is the name given to metals which are mixtures of more than one metal?								
		[1]							

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.

DATA SHEET The Periodic Table of the Elements

								Gr	oup								
I	II											III	IV	V	VI	VII	0
							1 H Hydrogen 1										4 He Helium
7 Li Lithium	9 Be Beryllium	1										11 B Boron 5	12 C Carbon 6	14 N Nitrogen	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon
23 Na Sodium	24 Mg Magnesiu 12	m										27 A1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulphur	35.5 C1 Chlorine 17	40 Ar Argon
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium 32	75 As Arsenic	79 Se Selenium 34	Bromine 35	84 Kr Krypton 36
Rubidium 37	88 Sr Strontiur 38	89 Y Yttrium	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	Cadmium 48	115 In Indium	119 Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury	204 T <i>l</i> Thallium 81	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	AC Actinium 89															
	Lanthano Actinoid			140 Ce Cerium 58	Pr Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	Tb Terbium 65	Dy Dysprosium 66	Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	а Х	a = relative atorX = atomic symb = proton (ator	ibol	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).