Name

www.xiremepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/05

Paper 5 Practical Test

May/June 2005

1 hour 15 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. Practical notes are provided on page 8.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

FOR EXAMINER'S USE	
1	
2	
TOTAL	

This document consists of 6 printed pages and 2 blank pages.

1 You are going to investigate a mixture of calcium hydroxide and water.

Read **all** the instructions below carefully **before** starting the experiment.

Instructions

Shake the mixture of calcium hydroxide and water provided in the bottle.

After one minute of shaking, filter the mixture into a beaker.

Start Experiment 1 when enough solution has been collected. Continue to filter the mixture.

Experiment 1

By using a measuring cylinder, measure 25 cm³ of the solution (filtrate) into the conical flask provided.

Carry out the titration as follows.

Fill the burette to the 0.0 cm³ mark with the solution **M** of hydrochloric acid.

Add 3 or 4 drops of phenolphthalein to the flask.

Add solution **M** slowly to the flask until the colour just disappears. Record the burette readings in the table. Pour the solution away and rinse the conical flask.

Experiment 2

Empty the contents of the burette down the sink.

Rinse the burette with the solution **N** of hydrochloric acid.

Repeat Experiment 1 using the solution **N** of hydrochloric acid.

Record your results in the table.

Normally you would be required to carry out repeat titrations. However, owing to time considerations you are only required to carry out **one** titration for each experiment

Table of results

burette readings/cm ³	Experiment 1	Experiment 2
final reading		
initial reading		
difference		

[6]

(a) Describe the appearance of the mixture of calcium hydroxide and water.

[1]

© UCLES 2005 0620/05/M/J/05

	fror	m to	[2]
	1101	n to	[2]
(c)		at type of chemical reaction occurs when hydro lroxide?	chloric acid reacts with calcium
			[1]
(d)	(i)	In which experiment was the greater volume of hy	
			[1]
	(ii)	Compare the volumes of acid used in Experiments	s 1 and 2.
			[2]
	/:::\		
,	(iii)	Suggest an explanation for the difference in volum	les.
			[2]
(e)	Exp	edict the volume of hydrochloric acid M which would be riment 1 was repeated with 50 cm ³ of calcium hy swer.	be needed to react completely if droxide solution and explain your
	vol	ume of solution	
		planation	
			[3]

(f)		ggest one change you could make to the appara	atus used in the experiments to
	ODI	ain more accurate results.	
		ain more accurate results.	·
(g)			[1]
(g)			[1]

2 You are provided with liquid A.

Carry out the following tests on $\bf A$, recording all of your observations in the table. Do **not** write any conclusions in the table.

tests	observations
(a) Describe the appearance and smell of A .	[2]
(b) Test the pH of the solution using indicator paper.	colour
	pH [2]
(c) Divide the liquid into five test-tubes.	
(i) To the first portion, add the piece of magnesium ribbon provided. Note any observations and test the gas.	[3]
(ii) To the second portion of liquid A , add slowly a spatula measure of anhydrous sodium carbonate. Test the gas with limewater.	[2]
(iii) To the third portion of liquid A , add a spatula measure of solid B . Boil gently for 2 minutes. Note any observations.	
By using a teat pipette transfer the solution to another test tube. To this solution add excess aqueous ammonia.	[2]

© UCLES 2005 0620/05/M/J/05

tests	observations
(iv) To the fourth portion of the liquid add about 1 cm ³ of ethanol. Ask your supervisor to add a few drops of concentrated sulphuric acid to the mixture. Boil the mixture gently. Pour the mixture into a beaker half full of water. Note your observations.	[2]
 (v) To the fifth portion of liquid A add a few drops of dilute sulphuric acid and about 1 cm³ of potassium dichromate solution. Boil gently and note any observation. 	
(d) (i) Name the gas given off in test (c	e)(i). [1]
(ii) Name the gas given off in test (c	e)(ii).
(e) Use your observations in test (c)(iii)	[1] to say what ion is present in solid B .
	[2]
(f) What conclusions can you draw abou	ut liquid A ?
	[2]
***************************************	[-]

BLANK PAGE

BLANK PAGE

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I ⁻) [in solution]	acidify with dilute nitric acid, then aqueous lead(II) nitrate	yellow ppt.
nitrate (NO ₃) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ²⁻) [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (Al 3+)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white., insoluble in excess	no ppt., or very slight white ppt.
copper(Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.