MARK SCHEME for the October/November 2005 question paper

0620 CHEMISTRY

0620/03
Paper 3 (Extended Theory), maximum mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published Report on the Examination.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

- CIE will not enter into discussion or correspondence in connection with these mark schemes.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

CIE is publishing the mark schemes for the October/November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE - OCTOBER/NOVEMBER 2005	0620	3

Question 1

(a)(i) lattice
[1]
(ii) high melting point or high fixed points
poor conductor as solid
good conductor as liquid, accept either aqueous or molten
hard
soluble in water
Any TWO
(b)(i) Mg^{2+}
(ii) N^{3-}
(iii) $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
[1]
(iv) opposite charges
[1]
Do NOT accept "attract" it is in the question accept electrostatic attraction as a phrase

Question 2

(a)(i) boiling
(ii) lower temperature or over temperature range or no plateau
(iii) direct continuation of E to F
(iv) close or touching far apart [2]
fast and random
[1]
cannot move apart can move apart
(b)(i) calcium ethanoate + hydrogen
(ii) zinc oxide or hydroxide
(c) $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
reactants [1] products [1]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - OCTOBER/NOVEMBER 2005	0620	3

Question 3

(a)(i) because concentration of BiCl_{3} decreases
bismuth chloride used up ONLY [1]
(ii) products are being formed or concentration of products
increases. Concentration mark given either (i) or (ii)
(iii) reaction has come to equilibrium
rates equal or no change in concentration
(iv) equilibrium to left or favours backward reaction or equilibrium moves to use up hydrochloric acid
BiOCl used up or BiCl_{3} formed
(b)(i) No change in volume or same number of moles on both sides
(ii) move to right

Increase in pressure favour side with smaller volume or smaller number of moles (of gas) or moves to side that tends to reduce pressure

Question 4

(a)(i) general molecular formula
same functional group
physical properties show trend -bp increase with n
same chemical properties
common methods of preparation
any TWO
(ii) $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH} \quad$ Mass of one mole $=130(\mathrm{~g})$
if formula correct but mass wrong [1]
(b) propan-1-ol or propan-2-ol
corresponding structural formula
name and formula must correspond for [2] if not ONLY [1]
(c)(i) structural formula of isomer
(ii) carbon dioxide and water
pentene
pentanoic acid

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - OCTOBER/NOVEMBER 2005	0620	3

Question 5

(a)(i)	38p 38e 50n	[1]
	38 p 38e 52n	[1]
	30 p 28e 35n	[1]
(ii)	Same number of protons and different number of neutrons	[1]
(iii)	8+2	[1]
(b)(i)	heat zinc blende in air to form oxide reduce oxide with carbon	[1]
(ii)	galvanising sacrificial protection alloys batteries roofing Any ONE	[1]
(c)(i)	hydrochloric acid	[1]
(ii)	$\begin{aligned} & \mathrm{Sr}^{2+}+2 \mathrm{e}=\mathrm{Sr} \\ & 2 \mathrm{C} t-2 \mathrm{e}=\mathrm{Cl}_{2} \\ & \text { or } 2 \mathrm{C} t=\mathrm{Cl}_{2}+2 \mathrm{e} \end{aligned}$	[1] [1]
(iii)	hydrogen [1] and strontium hydroxide [1]	[2]
(d)(i)	zinc + water = zinc oxide + hydrogen heat [1] steam [1]	[1]
(ii)	$\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ Not balanced [1] cold water	[2] [1]

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - OCTOBER/NOVEMBER 2005	0620	3

Question 7

(a) from methane [1]
and water [1]
OR electrolysis [1]
suitable electrolyte [1]
OR alkane [1]
cracking [1]
(b)(i) iron
(ii) lower temperature moves equilibrium to right [1]
because forward reaction is exothermic
(c)(i) $\mathrm{H}-\mathrm{H}$
endothermic
endothermic
exothermic
(ii) More heat given out than taken in [1]
$-2328+945+1308=-75(\mathrm{~kJ})[1]$
OR More heat given out bond forming than taken in bond breaking [2]
Must mention bond breaking and forming

