UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY
 Paper 3 (Extended)

October/November 2005
1 hour 15 minutes
Candidates answer on the Question Paper. No Additional Materials required.

Candidate Name

Centre Number

Candidate Number

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, graphs or rough working.
WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER DO NOT WRITE IN THE BARCODE. DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES. Do not use staples, paper clips, highlighters, glue or correction fluid. You may use a calculator.

Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of $\mathbf{1 4}$ printed pages and $\mathbf{2}$ blank page.

1 (a) The structure of a typical ionic compound is a regular arrangement of positive and negative ions.

(i) What is the name of this regular arrangement of particles?
(ii) Give two physical properties of ionic compounds.
\qquad
\qquad
(b) lons are formed by electron loss or gain. The electron distribution of a magnesium atom is $2+8+2$ and of a nitrogen atom is $2+5$.
(i) Give the formula of the magnesium ion.
\qquad
(ii) Give the formula of the nitride ion.
\qquad
(iii) What is the formula of the ionic compound, magnesium nitride?
\qquad
(iv) In this compound there is an ionic bond. Why are the two ions attracted to each other?
\qquad

2 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.
(a) A pure sample of ethanoic acid is slowly heated from $0^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ and its temperature is measured every minute. The results are represented on the graph below.

(i) Name the change that occurs in the region \mathbf{D} to \mathbf{E}.
\qquad
(ii) What would be the difference in the region \mathbf{B} to \mathbf{C} if an impure sample had been used?
\qquad
(iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature.
(iv) Complete the following table that compares the separation and movement of the molecules in regions \mathbf{C} to \mathbf{D} with those in \mathbf{E} to \mathbf{F}.

	C to D	E to F
separation (distance between particles)	$\ldots . ~$	$\ldots . ~$
movement of particles	random and slow	
		$\ldots . ~$

(b) Complete the word equations for the reactions of ethanoic acid. calcium $\quad+$ ethanoic acid \longrightarrow \qquad
$+$ \qquad
$\ldots .+$ ethanoic acid \longrightarrow zinc ethanoate + water
(c) Write the symbol equation for the reaction between ethanoic acid and sodium hydroxide.

3 Reversible reactions can come to equilibrium. They have both a forward and a backward reaction.
(a) When water is added to an acidic solution of bismuth(III) chloride, a white precipitate forms and the mixture slowly goes cloudy.
$\mathrm{BiCl}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{\text { forward }}{\rightleftharpoons} \mathrm{backward} \rightleftharpoons \mathrm{BiOCl}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$
colourless
(i) Explain why the rate of the forward reaction decreases with time.
\qquad
\qquad
(ii) Why does the rate of the backward reaction increase with time?
\qquad
\qquad
(iii) After some time why does the appearance of the mixture remain unchanged?
\qquad
\qquad
(iv) When a few drops of concentrated hydrochloric acid are added to the cloudy mixture, it changes to a colourless solution. Suggest an explanation.
\qquad
\qquad
(b) Both of the following reactions are reversible.

reaction 1	$\mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}(\mathrm{g})$
reaction 2	$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$	\rightleftharpoons	$2 \mathrm{NO}_{2}(\mathrm{~g})$

(i) Suggest a reason why an increase in pressure does not affect the position of equilibrium for reaction 1.
(ii) What effect would an increase in pressure have on the position of equilibrium for reaction 2? Give a reason for your answer.
\qquad

4 The alcohols form a homologous series. The first member is methanol and the fourth is butanol.

$$
\underset{\text { methanol }}{\mathrm{CH}_{3}-\mathrm{OH}}
$$

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ butanol
(a) (i) Give two general characteristics of a homologous series.
\qquad
\qquad
\qquad
(ii) Calculate the mass of one mole of the C_{8} alcohol.
\qquad
\qquad
(b) Give the name and structural formula of the third member of this series. name
structural formula
(c) The structural formula of the fifth member, pentan-1-ol, is drawn below.

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}
$$

(i) Draw the structural formula of an isomer of this alcohol.
(ii) Predict the names of the product(s) formed when pentan-1-ol

- reacts with an excess of oxygen,
and
- is dehydrated to form an alkene,
\qquad
- is oxidised by acidified potassium dichromate(VI).

5 Strontium and zinc are both metals with a valency of 2 . Strontium is more reactive than zinc. Its chemistry is similar to that of calcium.
(a) (i) Complete the following table that shows the number of protons, electrons and neutrons in each particle.

particle	protons	electrons	neutrons
${ }^{88} \mathrm{Sr}$			
${ }^{90} \mathrm{Sr}$			
${ }^{65} \mathrm{Zn}^{2+}$			

(ii) Explain why ${ }^{88} \mathrm{Sr}$ and ${ }^{90} \mathrm{Sr}$ are isotopes.
\qquad
(iii) Complete the electron distribution of an atom of strontium.
$2+8+18+\ldots \ldots \ldots$.
(b) The major ore of zinc is zinc blende, ZnS .
(i) Describe how zinc is extracted from zinc blende.
\qquad
\qquad
\qquad
(ii) Give a use of zinc.
\qquad
(c) The major ore of strontium is its carbonate, SrCO_{3}. Strontium is extracted by the electrolysis of its molten chloride.
(i) Name the reagent that will react with the carbonate to form the chloride.
(ii) The electrolysis of molten strontium chloride produces strontium metal and chlorine. Write ionic equations for the reactions at the electrodes.
negative electrode (cathode)
positive electrode (anode)
(iii) One of the products of the electrolysis of concentrated aqueous strontium chloride is chlorine. Name the other two.
\qquad
(d) Both metals react with water.
(i) Write a word equation for the reaction of zinc and water and state the reaction conditions.
word equation
conditions
(ii) Write an equation for the reaction of strontium with water and give the reaction condition.
equation
condition

6 (a) The following method is used to make crystals of hydrated nickel sulphate.
An excess of nickel carbonate, 12.0 g , was added to $40 \mathrm{~cm}^{3}$ of sulphuric acid, 2.0 $\mathrm{mol} / \mathrm{dm}^{3}$. The unreacted nickel carbonate was filtered off and the filtrate evaporated to obtain the crystals.

$$
\begin{aligned}
& \mathrm{NiCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NiSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NiSO}_{4}+7 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Mass of one mole of $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=281 \mathrm{~g}$
Mass of one mole of $\mathrm{NiCO}_{3}=119 \mathrm{~g}$
(i) Calculate the mass of unreacted nickel carbonate.

$$
\begin{aligned}
& \text { Number of moles of } \mathrm{H}_{2} \mathrm{SO}_{4} \text { in } 40 \mathrm{~cm}^{3} \text { of } 2.0 \mathrm{~mol} / \mathrm{dm}^{3} \text { acid }=0.08 \\
& \text { Number of moles of } \mathrm{NiCO}_{3} \text { reacted }= \\
& \text { Mass of nickel carbonate reacted }=
\end{aligned}
$$

(ii) The experiment produced 10.4 g of hydrated nickel sulphate. Calculate the percentage yield.

The maximum number of moles of $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ that could be formed $=$
\qquad
The maximum mass of $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ that could be formed $=$ \qquad
The percentage yield = \qquad
(b) In the above method, a soluble salt was prepared by neutralising an acid with an insoluble base. Other salts have to be made by different methods.
(i) Give a brief description of how the soluble salt, rubidium sulphate could be made from the soluble base, rubidium hydroxide.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a method of making the insoluble salt, calcium fluoride.
..
\qquad
\qquad

7 In 1909, Haber discovered that nitrogen and hydrogen would react to form ammonia. The yield of ammonia was 8%.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \text { the forward reaction is exothermic } \\
& \begin{array}{l}
\text { catalyst platinum } \\
\text { temperature } 600{ }^{\circ} \mathrm{C} \\
\text { pressure } 200 \mathrm{~atm}
\end{array}
\end{aligned}
$$

(a) Describe how hydrogen is obtained for the modern process.
\qquad
\qquad
(b) (i) What is the catalyst in the modern process?
\qquad
(ii) Explain why the modern process, which uses a lower temperature, has a higher yield of 15%.
\qquad
\qquad
(c) (i) Complete the following table that describes the bond breaking and forming in the reaction between nitrogen and hydrogen to form ammonia.

bonds	energy change /kJ	exothermic or endothermic
1 mole of $\mathrm{N} \equiv \mathrm{N}$ broken	+945	..
3 moles of \qquad broken	+1308
6 moles of $\mathrm{N}-\mathrm{H}$ formed	-2328	..

(ii) Explain, using the above data, why the forward reaction is exothermic.
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

