www.xiremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2007 question paper

0620 CHEMISTRY

0620/02

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2007	0620	2

1 (a) ALLOW: correct names / correct formulae

	(i)	В	[1]
	(ii)	E	[1]
	(iii)	D	[1]
	(iv)	E	[1]
	(v)	С	[1]
	(vi)	B + C	[1]
	(vii)	A + F	[1]
(b)	(i)	car exhausts / from vehicles ALLOW: from metal smelting NOT: from factories / from natural causes e.g. volcanoes NOT: from fuels if unqualified	[1]
	(ii)	damage to brain / nervous system (in children) ALLOW: mental damage / poisonous / toxic / lung irritant NOT: harmful / lung cancers / poisonous to lungs / makes you ill / respiratory diseases / lung problems etc.	[1]
(c)	ALL RE	ns sulphur dioxide / acid rain OW: sulphur burns to form acid rain IECT: carbon monoxide / dioxide causes acid rain = 0 IECT: sulphur causes acid rain = 0	[1]
	e.g. dan dan NO	ct of acid rain chemical erosion / chemical weathering / corrodes metals / nages trees [or plants] / kills trees [or plants] / damages limestone buildings / nages or kills plants [or animals] in lakes Γ: harmful / makes soils acidic / corrodes limestone [or buildings] / pollutant IECT: global warming / affects ozone layer	[1]
			FT 4 1 441

[Total: 11]

Page 3		Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2007	0620	2
(a)		gen / N_2 ; jen / O_2		[2]
(b)	(i)	carbon dioxide / CO ₂		[1]
	(ii)	water / H ₂ O		[1]
		O ₂ on left; correct balance		[2]
(c)	(i)	(Period) 3		[1]
		noble gases / inert gases ALLOW: group 0 / 8		[1]
	(iii)	correct electronic structure of argon 2.8.8		[1]
		inert / doesn't react / prevents (tungsten) filament from ALLOW: implication that argon produces light after exc current (discharge tubes) NOT: argon produces light when it reacts NOT: argon lights up		[1]
	(v)	22		[1]
(d)	169 IGN(ORE: units		[1]
(e)	(i)	XeF₄O (atoms in any order)		[1]
	(ii) covalent			[1]
		NOT: double and single bonding		[Total: 14]

2

				IGCSE -	- May/June 2	2007	0620	2
3	(a)	(i)	2 on	both sides (NOTE: o	nly one mark	.)		[1]
		(ii)	NOT NOT	es from water / water : arguments about po : easily made / renev ECT: found in air and	ollution ved	t / water renewab	ole resource	[1]
		(iii)	exot	hermic				[1]
	(b)		bon d ter / H	lioxide / CO ₂ ; I ₂ O				[2]
	(c)	cor (if f	rect u	or each correct fractions in the correct fractions is a linked to each spending in the canrect mark canrect mark canrect mark canrect fractions.	cific fraction	or use)		[2] [2]
			ction			Use		
							1161 17	
			finery T: me	gas ethane / natural gas		fuel (alone or qu ALLOW: for hea	,	
		Na	phtha			feedstock for ch making specific	emicals / chemicals e.g. etha	ne
		Par	raffin .	/ kerosene		oil stoves / heati feedstock for ch ALLOW: for coo NOT: fuel alone	_	
		Die	sel			fuel in cars / fue central heating f NOT: fuel alone	I for diesel engines uel	l
		Fue	el oil			fuel for ships an NOT: fuel alone	d power stations	
		Luk	oricati	ng fraction		lubricants / waxe	es / polishes	
		Bitu	umen	/ residue		roads / sealing r	oofs	
	(d)	(i)	mak (idea ALL	aking down of (larger) ing alkenes from larg a of large hydrocarbo OW: breaking down p r: decomposing unles	er alkanes ns to smaller petroleum frac	ones)		[1]

Mark Scheme

Page 4

Paper

Syllabus

Page 5		Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2	0620	2
	(ii)	high temperature ALLOW: heat REJECT: heat and burn		[1]
		catalyst OR high pressure ALLOW: aluminium oxide / silicates; IGNORE: incorrect name of catalyst NOT: high pressure (Catalyst + high pressure = 1 mark max	imum)	[1]
	(iii) correct structure of ethene		[1]	
		All atoms and bonds must be shown		[Total: 13]
4 (a)	(i)	substance which speeds up (rate of) re NOT: slows rate of reaction	action	[1]
	(ii)	transition elements / transition metals NOT: specific metals / named metals		[1]
(b)	(i)	axes correctly labelled with time on hor	zontal axis and use of full grid	[1]
		ALLOW: V for volume and t for time correct plotting of points (-1 per error / c Penalise 110 cm³ points only once	omission)	[2]
		smooth line going through all points		[1]
	(ii)	line steeper at start; ending up at same level NOT: ending up after 50 mins NOT: joining previous line before 50 mi	nutes	[1] [1]
	(iii)	all zinc used up / hydrochloric acid is in ALLOW: zinc and hydrochloric acid hav NOT: reaction finished / completed / HO	e completely reacted	[1]
(c)	(i)	(speed would be) fast <u>er</u> / rate increases (comparative needed) NOT: takes less time / reacts more	3	[1]
	(ii)	(speed would be) slow <u>er</u> / rate decreas (comparative needed) NOT: takes more time / reacts less	es	[1]
(d)	(i)	zinc chloride		[1]
	(ii)	lighted splint / light the gas; pops / explodes etc.		[1] [1]
				[Total: 14]

Page 6		Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2007	0620	2
(a)	electron			[1]
(b)	NOT: hig	of: selectricity / conducts heat / shiny / malleable / duct th density / high melting point / high boiling point / h solid if qualified by mercury as exception		[2]
(c)	4 th box d	own ticked		[1]
(d)	(light) blu	sodium hydroxide; ue ppt; in excess		[1] [1] [1]
	(light) blu	ammonia; ue ppt; n excess / forming (dark) blue solution		
(e)		wiring / water pipes / cooking utensils / coinage / a wires / for pipes	ny other sensible <u>s</u> ı	pecific use [1]
				[Total: 8]

5

Page 7		,	Mark Scheme	Syllabus	Paper				
			IGCSE – May/June 2007	0620	2				
(a)		assiuı m <u>ine</u>	m chlor <u>ide;</u>		[1] [1]				
(b)	(b) iodine lower in group / less reactive than chlorine / iodine less good oxidising agent ALLOW: bond between potassium and chlorine is too strong for iodine to react								
(c)	(i)	ALL	/ black; OW: purple black : brown / brown-black / purple		[1] [1]				
	(ii)		OW range of -200 to -90 (actual = -188); OW range of 1.6 to 4.0 (actual = 3.12)		[1] [1]				
(d)	(i)	9			[1]				
	(ii)	7			[1]				
(e)	kills de- ALI	bactoring bactor	ble use e.g. in swimming pools/ water purification / eria / bleaching agent (for paper) / extraction of titarg scrap tinplate etc. making named chemicals e.g. making hydrochloric making halogenoalkanes / making CFCs / making wage treatment / cleaning	nium / acid /	[1]				

6

[Total: 10]

	Page 8			Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2007	0620	2
7	(a) it is below the electrolyte		[1]			
	(b)	grap	hite			[1]
	 (c) A (d) aluminium is too reactive / a very reactive metal / above carbon in the reactivity series NOT: because carbon won't remove the oxygen from the oxide / won't reduce the oxide / won't react 		[1]			
			series [1]			
	(e)	(i)	the a	aluminium oxide / the electrolyte		[1]
		(ii)	CO ₂			[1]
		(iii)		on is released as carbon dioxide / carbon dioxide is : it's getting oxidised / reaction between carbon and	•	[1]
	(f)	530	(kg)			[1]
	(g)	molf ions				[2]

[Total: 10]