

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL International General Certificate of Secondary Edu	
CANDIDATE NAME		
CENTRE NUMBER		CANDIDATE NUMBER
CHEMISTRY		0620/03
Paper 3 (Exter	ided)	May/June 2007

Paper 3 (Extended)

Candidates answer on the Question Paper.

No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.	For Exam	iner's
The number of marks is given in brackets [] at the end of each question or part question.	1	
	2	

For Examiner's Use						

1 hour 15 minutes

This document consists of 14 printed pages and 2 blank pages.

1	Am	najor	source of energy is the combustion of fossil fuels.	[For Examiner's
	(a)	(i)	Name a solid fossil fuel.		Use
				[1]	
		(ii)	Name a gaseous fossil fuel.		
				[1]	
	(b)	Pet	roleum is separated into more useful fractions by fractional distillation.		
		(i)	Name two liquid fuels obtained from petroleum.		
			and	[2]	
		(ii)	Name two other useful products obtained from petroleum that are not used fuels.	as	
			and	[2]	
		(iii)	Give another mixture of liquids that is separated on an industrial scale by fraction distillation.	nal	
				[1]	
			[Total:	7]	

2 Complete the following table.

type of structure	particles present	electrical conductivity of solid	electrical conductivity of liquid	example
ionic	positive and negative ions	poor		
macro molecular	atoms of two different elements in a giant covalent structure	poor	poor	
metallic	and	good		copper

[Total: 6]

3 There are three methods of preparing salts.

Method **A** – use a burette and an indicator.

Method \mathbf{B} – mix two solutions and obtain the salt by precipitation.

Method ${\bf C}$ – add an excess of base or a metal to a dilute acid and remove the excess by filtration.

For each of the following salt preparations, choose one of the methods **A**, **B** or **C**, name any additional reagent needed and then write or complete the equation.

(i) the soluble salt, zinc sulphate, from the insoluble base, zinc oxide

	method		
	reagent		
	word equation		[3]
(ii)	the soluble salt, p	ootassium chloride, from the soluble base, potassium hydroxide	;
	method		
	reagent		
	equation	+ $\rightarrow \text{KC}l + \text{H}_2\text{O}$	[3]
(iii)	the insoluble salt,	lead(II) iodide, from the soluble salt, lead(II) nitrate	
	method reagent		
	-		
	equation Pb ²⁺ +	\rightarrow	[4]
		[Total:	10]

-		eriodic table to help you answer these questions.	
(a) Pre	edict the formula	a of each of the following compounds.	
(i)	barium oxide		[1]
(ii)	boron oxide		[1]
(b) Giv	ve the formula o	f the following ions.	
(i)	sulphide		[1]
(ii)	gallium		[1]
		howing the arrangement of the valency electrons in one molecule ound nitrogen trichloride.	e of
		an electron from a nitrogen atom. an electron from a chlorine atom.	[3]
			[.]
(d) Po	tassium and var	nadium are elements in Period IV.	
(i)	State two diffe	erences in their physical properties.	
			[2]
(ii)	Give two diffe	rences in their chemical properties.	
			[2]

5

4

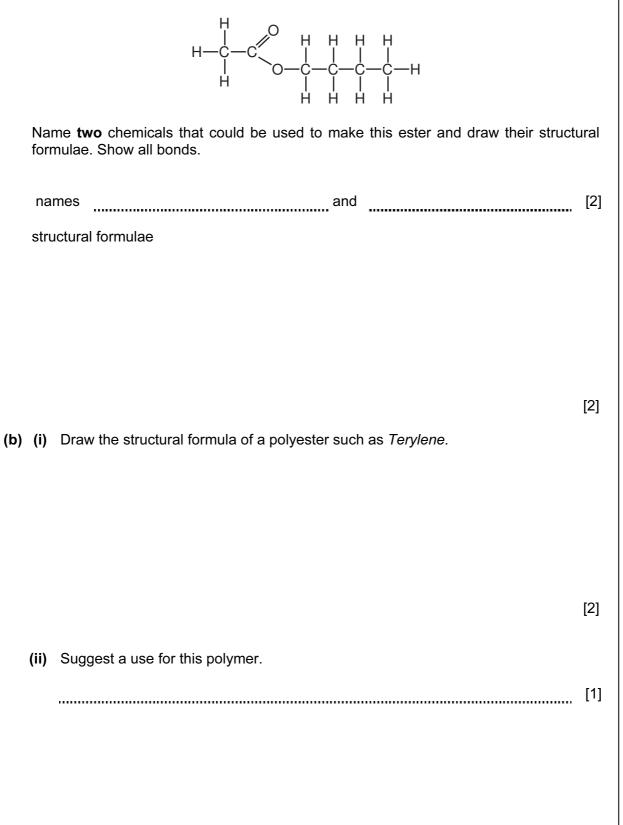
(e) Fluorine and astatine are halogens. Use your knowledge of the other halogens to predict the following: Examiner's (i) The physical state of fluorine at r.t.p. The physical state of astatine at r.t.p. [2] (ii) Two similarities in their chemical properties [2] [Total 15]

For

Use

(a) Titanium is produced by the reduction of its chloride. This is heated with magnesium in For an inert atmosphere of argon. Examiner's Use $TiCl_4$ + 2Mg \rightarrow Ti + 2MgCl_2 (i) Explain why it is necessary to use argon rather than air. [1] (ii) Name another metal that would reduce titanium chloride to titanium. [1] (iii) Suggest how you could separate the metal, titanium, from the soluble salt magnesium chloride. [2] (b) Titanium is very resistant to corrosion. One of its uses is as an electrode in the cathodic protection of large steel structures from rusting. nowei steel oil rig which is cathode titanium anode sea water contains $H^{+}(aq), OH^{-}(aq),$ Na⁺(aq), Cl-(aq) (i) Define oxidation in terms of electron transfer. [1] (ii) The steel oil rig is the cathode. Name the gas formed at this electrode. [1] (iii) Name the **two** gases formed at the titanium anode. and [2] (iv) Explain why the oil rig does not rust. [2]

5


Another way of protecting steel from corrosion is sacrificial protection. Give two differences between sacrificial protection and cathodic protection.	For Examiner's Use
[2]	
[Total: 12]	

- 6 Aluminium is extracted by the electrolysis of a molten mixture that contains alumina, which is aluminium oxide, Al₂O₃.
 - (a) The ore of aluminium is bauxite. This contains alumina, which is amphoteric, and iron(III) oxide, which is basic. The ore is heated with aqueous sodium hydroxide. Complete the following sentences.

dissolves to give a solution of The does not dissolve and can be removed by [4] The (b) Complete the labelling of the diagram. waste gases - carbon anode (+) mixture of aluminium oxide and temperature is [4] (c) The ions that are involved in the electrolysis are Al^{3+} and O^{2-} . (i) Write an equation for the reaction at the cathode. [2] (ii) Explain how carbon dioxide is formed at the anode. [2]

(d) Giv	(d) Give an explanation for each of the following.									
(i)	Aluminium is used extensively in the manufacture of aircraft.									
(ii)	Aluminium is used to make food containers.	[1]								
		[2]								
(iii)	Aluminium electricity cables have a steel core.									
		[1]								
	[Total:	16]								

- 7 Esters, fats and polyesters all contain the ester linkage.
 - (a) The structural formula of an ester is given below.

11

(c) Cooking products, fats and vegetable oils, are mixtures of saturated and unsaturated esters.

For Examiner's Use

The degree of unsaturation can be estimated by the following experiment. 4 drops of the oil are dissolved in 5 cm^3 of ethanol. Dilute bromine water is added a drop at a time until the brown colour no longer disappears. Enough bromine has been added to the sample to react with all the double bonds.

cooking product	mass of saturated fat in 100 g of product/g	mass of unsaturated fat in 100 g of product/g	number of drops of bromine water
margarine	35	35	5
butter	45	28	4
corn oil	10	84	12
soya oil	15	70	10
lard	38	56	

- (i) Complete the one blank space in the table.
- (ii) Complete the equation for bromine reacting with a double bond.

/

$$C = C + Br_2 \rightarrow$$

(iii) Using saturated fats in the diet is thought to be a major cause of heart disease. Which of the products is the least likely to cause heart disease?

[1]

[1]

[2]

(d) A better way of measuring the degree of unsaturation is to find the iodine number of the unsaturated compound. This is the mass of iodine that reacts with all the double bonds in 100 g of the fat.

Use the following information to calculate the number of double bonds in one molecule of the fat.

Mass of one mole of the fat is 884g.	
One mole of I_2 reacts with one mole $C = C < $.	
The iodine number of the fat is 86.2g.	
Complete the following calculation.	
100g of fat reacts with 86.2g of iodine.	
884 g of fat reacts with	g of iodine.
One mole of fat reacts with	moles of iodine molecules.
Number of double bonds in one molecule of fat is	[3]
	[Total:14]

© UCLES 2007

13

Use

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

								Gr	oup								
I	II											III	IV	V	VI	VII	0
	·						1 H Hydrogen 1										4 He Helium
7 Li Lithium 3	9 Be Beryllium							-				11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
23 Na ^{Sodium}	24 Mg Magnesium 12											27 A1 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 ^{Chlorine} 17	40 Ar Argon 18
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb _{Niobium} 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn ^{Tin} 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
133 Cs _{Caesium} 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta ^{Tantalum} 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89 †									·						
	0-103 Actinoid series Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb L								175 Lu Lutetium 71								
Кеу	X X	= relative aton = atomic sym = proton (atom	bol	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm ^{Curium} 96	Bk Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

DATA SHEET The Periodic Table of the Elements

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).