www.xirenepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2007 question paper

0620 CHEMISTRY

0620/03

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ge 2			Paper		
			IGCSE – October/November 2007 0	620	03		
	diffu crys frac filtra NO	usior stallistiona tiona	As the candidate are selecting from a list, the above are the	•	[1] [1] [1] [1] able [Total: 5]		
2	(a)	23 11	Na		[1]		
		40 184	₃ Ar		[1]		
		31 15	P ³⁻ [1] for charge and [1] for symbol etc.		[2]		
			Al^{3+} [1] for charge and [1] for symbol etc.		[2]		
			OTE Only the above are to be awarded the mark				
	(b)	par		[1]			
		COND they have the same proton number or the same number of protons or the same atomic number					
		NOT the same number of electrons Accept same number of electrons and protons [To					
3	(a)		rrect ratio MgBr ₂ or Mg 2Br		[1]		
		IF f	cept anywhere in space formula suggests covalency then [1] only for MgBr ₂				
		or Mg 2Br correct charges Mg ²⁺ and Br ⁻ Do not be concerned about location of minus sign 8e around bromine					
	NOTE do not require correct coding – just 7 and 1 coded differently NOTE ignore electrons around magnesium						
	(b)	(i)	pattern or order or regular or repeat or alternate		[1]		
			COND positive and negative <u>ions</u> or atoms or molecules or part NOTE Accept a sketch that shows the above, that is particles ar way, e.g. any ionic compound such as sodium chloride		[1] ular		
		(ii)	Any reason from the list:		[1]		
			charges must balance or based on valencies				
			or group II and group VII or 2e in outer level and 7e in outer level or magnesium loses 2 electrons and brom <u>ine</u> gains 1 electron (p	per atom)			
	((iii)		romino\	[1]		
			lost electrons or given or donated electrons or transferred (to br reduced	onine)	[1] [1]		
			gained or accepted electrons	[7	[1] Fotal: 10]		

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2007	0620	03

4 (a) (i) bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry or kill microbes(etc) or insecticide

[1]

(ii) (react with) oxygen or air **NOT** burnt/burn in air/oxygen 450°C

[1]

vanadium oxide catalyst (if oxidation state given has to be correct) or platinum If four conditions are given which include high pressure then MAX [2] High pressure is incorrect **MAX** 10 atm.

[1] [1]

(iii) ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate

[1]

(b) (i) vaporisation **or** boiling **or** evaporation

[1] [1]

condensation or liquefaction **NOTE** order in which changes are given is not important **NOT** liquid => gas => liquid

(ii) to get maximum yield of zinc or reduce all zinc oxide

[1]

NOTE the above mark is awarded for why add excess carbon moves equilibrium to right **or** to favours the products **or** removes CO₂ from equilibrium

[1]

NOTE this mark is awarded for how does the addition of excess carbon give max yield of zinc

NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas **EXAMPLES**:

moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] **NOT** just to make CO from CO₂

[1]

(c) (i)
$$Zn^{2+} + 2e = Zn$$

(ii)
$$4OH^{-} - 4e = O_2 + 2H_2O$$

or $4OH^{-} = O_2 + 2H_2O + 4e$
or $2H_2O = 4H^{+} + O_2 + 4e$
or $2H_2O - 4e = 4H^{+} + O_2$
oxygen as product [1]

[2]

(iii) sulphuric acid

TWO uses

[1]

NOTE there are no alternative answers to the above

(d) prevent iron from rusting **NOT** with galvanising **or** sacrificial protection making brass or making alloys NOT bronze electroplating or as an electrode in electrolysis cells roofing sacrificial protection coinage

[Total: 15]

Page 4		4	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2007	0620	03
5	(a) (i)		ilibrium to left or many molecules and few ions or ially ionised or reverse reaction favoured		[1]
	(ii)	meth	er donates <u>proton</u> hylamine accepts a proton ΓE If hydrogen ion then ONLY [1] provided both are o	correct	[1] [1]
	(b) less than 12 more than 7 smaller <u>concentration</u> of hydroxide ions or partially dissociated or poor proton acceptor or poor H ⁺ acceptor NOT it is a weak base				[1] [1]
	(c) (i)	meth NOT	$NH_2 + HCl = CH_3NH_3Cl$ hylammonium chloride FE the equation must be as written, the equation with as guidance.	th sulphuric acid h	[1] [1] as been
	(ii)		vn precipitate CEPT orange or red/brown or brick red or brown/red		[1]
	(iii)	sodi	um hydroxide or any <u>named</u> strong base		[1] [Total: 9]
6	(a) (i)	heat	t (energy)		[1]
	(ii)	exot	hermic		[1]
	(iii)		$_{5}OH + 3O_{2} = 2CO_{2} + 3H_{2}O$ $CO_{2} + H_{2}O$ ONLY [1]		[2]
	(iv)	strai betw	ring points correctly ight line veen –2640 and –2700kJ/mol FE minus sign needed		[1] [1] [1]
	(v)	sam cons simil	eral (molecular) formula le functional group secutive members differ by CH ₂ lar chemical properties or react same way		
			Γ a comment about physical properties Γ TWO		[2]
	(b)		- CH(OH)-CH₃ ΓC₃H ₇ OH		[1]
		prop NOT acce acce	pan-2-ol "2" is needed IE the name and the formula must correspond for book the performula is tructural formula — all bonds shown correctly the performulae of the ether I CH ₃ - CH(HO)-CH ₃		[1]

Page 5		Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2007	0620	03
(c) (i)	heat NOT alka ANY OR	t (alkane) or (alkane) and catalyst IE thermal cracking or catalytic cracking [2] ne = alkene + hydrogen IVO Steam reforming + H ₂ O = CO + 3H ₂ [2]		[2]
		vater/steam [1] slyst or heat [1]		
(ii)	inco	bustion or burning mplete or insufficient oxygen/air ACCEPT steam reforming as above [2]		[1] [1]
(iii)	or v	pressure ND forward reaction volume decrease olume of reactants greater than that of products ewer moles of gas on the right		[1]
	or fe	ewer gas molecules on right TE accept correct arguments about either reactants	s or products	[1]
(d) (i)	meth	hyl ethanoate		[1]
(ii)	prop	panoic acid or propanal		[1]
(iii)	ethe	ene		[1] [Total: 20]
7 (a) (i)	ACC but h	er <u>concentration</u> CEPT without reference to experiment 2 higher concentration must be referred to expt 1		[1]
	CON	ND fewer collisions or lower rate of collision		[1]
(ii)		dered so <u>larger surface area</u> ND so more collisions or higher rate of collisions		[1] [1]
(iii)	or m or m CON or m	ner temperature particles move faster more particles have enough energy to react or have more particles have Ea ND collide more frequently more particles have energy to react	e more energy	[1]
		nore collisions result in a reaction TE for conformity faster collisions = rate of collision	s	[1]

Page 6		Mark Scheme	Syllabus	Paper
•		IGCSE – October/November 2007	0620	03
(b) (i)	from grad there		[1] [1]	
(ii)	(ii) mass of one mole of $CaCO_3 = 100$ number of moles of $CaCO_3 = 0.3/100 = 0.003$ moles of $HCl = 5/1000 \times 1 = 0.005$ reagent in excess is $CaCO_3$ ecf from above			
	woul or hy NOT	aCO₃ itio	[1]	
(iii)	mole NOT	k ecf to (ii) , that is from moles of limiting reagent in es of $CO_2 = 0.005 \times 0.5 \times 24 = 0.06 \text{ dm}^3$ cm ³ unless numerically correct. 60 cm ³ are other units	(ii)	[1]
	•	TE If both number of moles integers then no ecf for	(ii) and (iii)	[Total: 13]