

READ THESE INSTRUCTIONS FIRST

Write your, Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. Practical notes are provided on page 8.

At the end of the examination, fasten all you work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
Total	

This document consists of 6 printed pages and 2 blank pages.

1 You are going to investigate the reaction between potassium manganate(VII) and a metallic salt solution.

Read all the instructions below carefully before starting the two experiments.

Experiment 1

(a) Pour a little of the metal salt solution **A** into a test-tube. Add about 1 cm³ of aqueous sodium hydroxide and note your observation.

observation [1]

(b) Fill the burette provided up to the 0.0 cm³ mark with the potassium manganate(VII) solution. Using a measuring cylinder, pour 25 cm³ of solution **A** of the salt solution into the conical flask provided. Shake the flask to mix the contents.

From the burette add 1 cm³ of the potassium manganate(VII) solution to the flask, and shake to mix thoroughly. Continue to add potassium manganate(VII) solution to the flask until there is a pale pink colour in the contents of the flask. Record the burette readings in the table.

Experiment 2

- (c) Pour away the contents of the flask and rinse with distilled water. Fill the burette up to the 0.0 cm³ mark with the potassium manganate(VII) solution. Repeat Experiment 1(b) exactly using solution B instead of solution A. Record your burette readings in the table and complete the table.
- (d) Pour a little of the solution in the flask into a test-tube. Add about 1 cm³ of aqueous sodium hydroxide and note your observation.

observation [1]

Table of results

Burette readings/cm³

	Experiment 1	Experiment 2
final reading		
initial reading		
difference		

For Examiner's Use

	Describe the appearance of the solution in the conical flask before adding potassium manganate(VII) solution.	the For Examiner's Use
••		[1]
	What happens to the colour of the solution in the flask as the potassium manganate(VII) solution is added?	
••		[1]
(g) ((i) In which Experiment was the greatest volume of potassium manganate(solution used?	VII)
		[1]
(i	 ii) Compare the volumes of potassium manganate(VII) solution used Experiments 1 and 2. 	l in
		[1]
(ii	ii) Suggest an explanation for the difference in the volumes.	
		[2]
(h) F	Predict the volume of potassium manganate solution which would be needed to r completely with 50cm^3 of solution B .	eact
		[2]
	Explain one change that could be made to the experimental method to obtain r accurate results.	nore
	change	
	explanation	[2]
(j) \	What conclusion can you draw about the salt solution from	
	(i) Experiment 1(a),	[1]
	(ii) Experiment 2(d)? [Total:	[1] 20]

You are provided with two solids, solid T and solid V.
 Carry out the following tests on T and V, recording all of your observations in the table.
 Conclusions must not be written in the table.

For Examiner's Use

tests	observations
tests on solid T	
(a) Describe the appearar solid T .	nce of [1]
(b) Place a little of solid T i test-tube. Heat the solid then more strongly. Te gas given off with a ligh splint.	d gently, st the
 (c) Dissolve one spatula r of solid T in about 3 cm distilled water and sha dissolve. Leave to stand for 1 m Decant the liquid into a test-tube. Divide the solution into portions in test-tubes. (i) Test the pH of the using Universal In solution. (ii) To the second por aqueous sodium h in drops, then add sodium hydroxide (iii) To the third portion solution add abou iron(III) chloride s Note the colour. Heat the solution. 	n ³ of ke to iinute. another o 3 equal solution dicator colour pH[2] tion add hydroxide excess solution. [2] n of t 1 cm ³ of

[1]
[1]
[1]
olour
H[2]
[1]
[1]
/?
2

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ^{2–})	add dilute acid	effervescence, carbon dioxide produced
chloride (C <i>l</i> ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide (I [−]) [in solution]	acidify with dilute nitric acid, then aqueous lead(II) nitrate	yellow ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulphate (SO ₄ ^{2–}) [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium (A <i>l</i> ³⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
calcium (Ca ²⁺)	white., insoluble in excess	no ppt., or very slight white ppt.
copper(Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint