

	UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education
CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
CHEMISTRY	0620/02
Paper 2	May/June 2009

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 15 printed pages and 1 blank page.

(a)	Cho	oose from the list o	of compound	s to answer q	uestions (i) t	o (v) .		For Examiner's
		calcium carl	oonate	carbon dio	xide	hydrogen chloride		Use
		ron(III) oxide	lead(II) b	promide	methane	sodium hydrox	ide	
	Ead	h compound can l	be used onc	e, more than c	once or not a	t all.		
	Nar	ne the compound	which					
	(i)	is a transition me	tal compoun	d,				
							. [1]	
	(ii)	produces brown f	umes at the	anode when e	electrolysed,			
							[1]	
	(iii)	is used to manufa	acture lime,					
							[1]	
	(iv)	dissolves in wate	r to form an	alkaline soluti	on,			
							[1]	
	(v)	is the main consti	tuent of natu	ural gas.				
							[1]	

(b)	At a	a high temperature iron(III) oxide Fe ₂ O ₃ + 3C	-			For Examiner's Use
	(i)	Explain how the equation show	s that iron(III) oxi	de is reduced by o	carbon.	
					[1]	
	(ii)	Complete these sentences abo		-		
		bauxite blast	converter	haematite	lime	
		limestone	sand	sl	ag	
		Iron is extracted from		by mixing the	ore with	
		Iron is extracted from coke and		by mixing the		
			in a		furnace.	
		coke and	in ain a		furnace.	

2 The table shows some observations about the reactivity of various metals with dilute hydrochloric acid.

For Examiner's Use

metal	observations
calcium	many bubbles produced rapidly with much spitting
copper	no bubbles formed
iron	a few bubbles produced very slowly
magnesium	many bubbles produced rapidly with no spitting

(a) Put these metals in order of their reactivity.

most reactive —		→	least reactive	;
				[1]

- (b) Zinc is between iron and magnesium in its reactivity. Suggest what observations are made about how fast the bubbles are produced when zinc reacts with dilute hydrochloric acid.
 - [1]
- (c) Magnesium is extracted by the electrolysis of molten magnesium chloride.

(i) What information in the diagram suggests that magnesium is less dense than molten magnesium chloride?

[1]

	(ii)	Suggest why magnesium has to be extracted by electrolysis rather than by heatin its oxide with carbon.	9 For Examiner's Use
		[1]
	(iii)	Suggest why a stream of inert gas is blown over the surface of the molte magnesium.	n
		[1]
	(iv)	State the name of a gaseous element which is inert.	
		[1]
(d)	mag	ome old magnesium manufacturing plants, coal gas is blown over the surface of th gnesium. Ist shows the main substances in coal gas.	e
		carbon monoxide ethene hydrogen	
		hydrogen sulfide methane	
	(i)	Draw the structure of ethene showing all atoms and bonds.	
		[1]
	(ii)	[Suggest two hazards of using coal gas by referring to two specific substances i the list.	
	(ii)	Suggest two hazards of using coal gas by referring to two specific substances i	
	(ii)	Suggest two hazards of using coal gas by referring to two specific substances in the list.	
	(ii)	Suggest two hazards of using coal gas by referring to two specific substances is the list. substance	

(e) Carbon monoxide can be removed from coal gas by mixing it with steam and passing the mixture over a catalyst of iron(III) oxide at 400 °C. Examiner's

For

Use

 $\mathsf{CO} \ \ \textbf{+} \ \ \mathsf{H}_2\mathsf{O} \ \ \rightleftharpoons \ \ \mathsf{CO}_2 \ \ \textbf{+} \ \ \mathsf{H}_2$

(i)	Write a word equation for this reaction.	
		[1]
(ii)	What does the symbol \rightleftharpoons mean?	
		[1]
(iii)	Iron(III) oxide reacts with acids to form a solution containing iron(III) ions. Describe a test for aqueous iron(III) ions.	
	test	
	result	
		[2]
	[Total: 1	13]

	leum is a mi I, paraffin and		arboris which can					
(a) S	State the name	e of the process ι	used to separate th	ese fractions.				
								[1]
(b) N	Name two oth		n are obtained from	-				
•••			and				I	[2]
(c) 🤆	Give one use t	for the paraffin fra	action.					
								[1]
• •	•	•	ed from petroleum a ctures are alkanes?					
	Α	В		С		D		
	н	Ц	н Н		н	Н	н	
H	 Сн 		H II / H—C-	—О—Н	 Н—С—	–C–	-ç—	н
	н	Н́	`н н		Η̈́	Н Н	Н Н	
 (e) L	H Jse words fror		`H H		Ĥ			[1]
 (e) L	H Jse words fror ethane		н н				1	[1]
 (e) L	ethane	m the list below to	H H	wing sentence		н 	1	[1]
	ethane read	m the list below to ethene ctive	H H o complete the follo hydrogen	wing sentence nitrogen	⊢ e. vater	⊣́ xyger	 1	
Д	ethane read	m the list below to ethene ctive	H <u>H</u> o complete the follo hydrogen unreactive	wing sentence nitrogen y	e. water k	н́ xyger but the	 n ey can	
μ β (f) μ	ethane read Alkanes such a be burnt in Alkanes are sa What do you u	m the list below to ethene ctive as aturated hydrocar inderstand by the	H H	wing sentence nitrogen y		H xyger	••••••••••••••••••••••••••••••••••••••	
μ β (f) μ	ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	m the list below to ethene ctive as aturated hydrocar inderstand by the	H H complete the follo hydrogen unreactive are generall to form carbon div bons.	wing sentence nitrogen y oxide and	e. water	́н xyger out the	 ey can	
Α b (f) Α V (ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	m the list below to ethene ctive as aturated hydrocar inderstand by the	H H	wing sentence nitrogen y oxide and	e. water t	H xyger	•y can	
Α b (f) Α V (ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	m the list below to ethene ctive as aturated hydrocar inderstand by the	H H	wing sentence nitrogen y oxide and	H e. water	н́ xyger	•••• ••••	

This question is about some compounds of nitrogen. For Examiner's Use A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. The gas was tested with moist red litmus paper. red litmus paper ammonium sulfate and sodium hydroxide heat gently (a) State the name of the gas released. [1] (b) State the colour change of the litmus paper. [1] (c) Complete the word equation for the reaction of ammonium carbonate with hydrochloric acid. → + + hydrochloric ammonium carbonate acid [3] . (d) Ammonium salts such as ammonium nitrate, NH₄NO₃ and ammonium chloride NH₄Cl are used as fertilisers. (i) Explain why farmers need to use fertilisers.[1] (ii) Explain why ammonium nitrate is a better fertiliser than ammonium chloride. [1]

	(iii) Calculate the relative formula mass of ammonium nitrate.	For Examiner's Use
	[1]	
(e)	When ammonium nitrate is heated nitrogen(I) oxide is given off. Nitrogen(I) oxide relights a glowing splint. Name one other gas which relights a glowing splint.	
(f)	[1] State one harmful effect of nitrogen oxides on the environment.	
	[1] [Total: 10]	

5 A student used the apparatus shown below to investigate the rate of reaction of calcium carbonate with dilute hydrochloric acid.

For

Examiner's Use

(At what time was the reaction just complete? [1] 	For Examiner's Use
(i	 i) On the graph, mark with an X the point where the speed (rate) of reaction was fastest. 	
(ii	i) The student repeated the experiment but altered the concentration of the hydrochloric acid so that it was half the original value. In both experiments calcium carbonate was in excess and all other conditions were kept the same.	
	On the graph on page 10, draw a curve to show how the mass of the flask and contents changes with time when hydrochloric acid of half the concentration was used. [2]	
(c) ⊦	low does the speed (rate) of this reaction change when	
(i) the temperature is increased, [1]	
(i	i) smaller pieces of calcium carbonate are used? [1]	
(d) C	Complete the following sentence using words from the list.	
	combustion expansion large rapid slow small	
Ir	n flour mills there is often the risk of an explosion due to the rapid	
0	f the very particles which have a very	
••	surface area to react. [3]	
(e) C	Cells in plants and animals break down glucose to carbon dioxide and water.	
	glucose + oxygen —→ carbon dioxide + water	
(i) State the name of this process.	
	[1]	
(i	 In this process enzymes act as catalysts. What do you understand by the term <i>catalyst</i>? 	
	[1]	
	[Total: 12]	

Bromine is an element in Group VII of the Periodic Table. 6 For Examiner's Use (a) Write the formula for a molecule of bromine. [1] (b) Complete the diagram below to show the arrangement of the molecules in liquid bromine. ^orepresents a bromine molecule [2] (c) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes brown fumes were seen just above the liquid surface. After one hour the brown colour had spread completely throughout the gas jar. air liquid bromine after 2 minutes after start Use the kinetic particle theory to explain these observations.

[3]

- (d) Magnesium salts are colourless but Group VII elements are coloured. For An aqueous solution of magnesium bromide reacts with an aqueous solution of Examiner's Use chlorine. magnesium bromide + chlorine ----- magnesium chloride + bromine State the colour change in this reaction. [2] (e) A solution of magnesium bromide will not react with iodine. Explain why there is no reaction. [1] (f) The structures of some compounds containing bromine are shown below. Α В С D Na Br Na Br Br Br Br Br H-Br Zn² 7n² Br Na⁺ Br Na Br Br Br Br Br Na Br Na⁺ Br
 - (i) Write the simplest formula for the substance with structure A. [1] (ii) State the name of the substance with structure D. [1]
 - (iii) State the type of bonding within a molecule of structure C.
 - [1] (iv) Which two structures are giant structures? and [1] (v) Why does structure A conduct electricity when it is molten?

..... [Total: 14]

Br

Na⁺

Br

Na

[1]

7	Hyd	lrogen chloride can be made	by burning hydrogen ir	n chlorine.		For Examiner's
	(a)	Complete the equation for the	is reaction.			Use
		H ₂ +	→	HC <i>l</i>	[2]	
	(b)	Draw a dot and cross diagra Show all the electrons.	m for a molecule of hy	drogen chloride.		
		use o for an electron from a use x for an electron from a				
					[2]	
	(c)	Hydrochloric acid is formed v Suggest the pH of hydrochlo Put a ring around the correct	oric acid.	e gas dissolves in	water.	
		рН1 р	H7 pH	9 F	oH 13 [1]	
	(d)	pH 1 p Complete the equation for the				
	(d)	Complete the equation for th		pric acid with zinc.	[1]	
		Complete the equation for th	e reaction of hydrochlo acid ——→ zinc ch	oric acid with zinc. loride +	[1] [1]	
		Complete the equation for th zinc + hydrochloric Describe how dry crystals chloride.	e reaction of hydrochlo acid ——→ zinc ch	oric acid with zinc. loride + be obtained from	[1] [1] a solution of zinc	
		Complete the equation for th zinc + hydrochloric Describe how dry crystals chloride.	e reaction of hydrochlo acid — → zinc ch of zinc chloride can b	oric acid with zinc. loride + oe obtained from	[1] [1] a solution of zinc	
		Complete the equation for the zinc + hydrochloric Describe how dry crystals chloride.	ne reaction of hydrochlo acid → zinc ch of zinc chloride can b m zinc chloride.	oric acid with zinc. loride + oe obtained from	[1] [1] a solution of zinc	
	(e)	Complete the equation for the zinc + hydrochloric Describe how dry crystals chloride. A student electrolysed molte State the name of the produc	ne reaction of hydrochlo acid → zinc ch of zinc chloride can b m zinc chloride.	oric acid with zinc. loride + be obtained from	[1] [1] a solution of zinc 	
	(e)	Complete the equation for the zinc + hydrochloric Describe how dry crystals chloride. A student electrolysed molte State the name of the produc (i) the anode,	e reaction of hydrochlo acid → zinc ch of zinc chloride can b n zinc chloride. ct formed at	oric acid with zinc. loride + oe obtained from	[1][1] a solution of zinc[2][1]	

BLANK PAGE

								Gr	oup								
I	II											IV	V	VI	VII	0	
	1						1 H Hydrogen 1						1			1	4 He Helium
7 Li Lithium	9 Be Beryllium							_				11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
23 Na Sodium	24 Mg Magnesium 12											27 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C 1 Chlorine 17	40 Ar Argon 18
39 K Potassium	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu ^{Copper} 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr ^{Zirconium} 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh ^{Rhodium} 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe _{Xenon} 54
133 Cs Caesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T I Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium	226 Ra Radium 88	227 Ac Actinium 89				·							•			•	
58-71 Lanthanoid series 90-103 Actinoid series					Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb ^{Ytterbium} 70	175 Lu Lutetiun 71		
a a = relative atomic mass 232 238 ey X x = atomic symbol Th Pa U b b = proton (atomic) number 90 Protactinium 91					Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium	Lr Lawrenciu 103		

© UCLES 2009