Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE uses different variants of some question papers for our most popular assessments with large and widespread candidature. The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

www.tiremepapers.com

The content assessed by the examination papers and the type of questions is unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiners' Reports that are available.

Question Paper	Mark Scheme	Principal Examiner's
Introduction	Introduction	Introduction
First variant Question Paper	First variant Mark Scheme	First variant Principal Examiner's Report
Second variant Question Paper	Second variant Mark Scheme	Second variant Principal Examiner's Report

Who can I contact for further information on these changes? Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

The titles for the variant items should correspond with the table above, so that at the top of the first page of the relevant part of the document and on the header, it has the words:

• First variant Question Paper / Mark Scheme / Principal Examiner's Report

or

Second variant Question Paper / Mark Scheme / Principal Examiner's Report

as appropriate.

|--|

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 5 3	CHEMISTRY		0620/31
	Paper 3 (Extend	ded)	May/June 2009
2 9			1 hour 15 minutes
7	Candidates ans	wer on the Question Paper.	
965	No Additional M	laterials are required.	

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
Total					

This document consists of 15 printed pages and 1 blank pages.

2

Some grass is crushed and mixed with the solvent, propanone. The colour pigments are

(a) (i) Draw a labelled diagram to describe how you could show that there is more than

- [3]
 (ii) Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?
 - (b) Explain the role of chlorophyll in green plants.

extracted to give a deep green solution.

one coloured pigment in the green solution.

[3]

[Total: 8]

For

Examiner's Use

1

2 The results of experiments on electrolysis using inert electrodes are given in the table.

Complete the table; the first line has been completed as an exam

electrolyte

hents on electrolysis using inert electrodes are given in the table. The first line has been completed as an example.						
change at negative electrode	change at positive electrode	change to electrolyte				
lead formed	bromine formed	used up				

	electrode	electrode	electrolyte
molten lead(II) bromide	lead formed	bromine formed	used up
	potassium formed	iodine formed	used up
dilute aqueous sodium chloride			
aqueous copper(II) sulfate			
	hydrogen formed	bromine formed	potassium hydroxide formed
,			

[Total: 8]

electron distribution

		В	2,8,4	
		С	2,8,8,2	
		D	2,8,18,8	
		Е	2,8,18,8,1	
		F	2,8,18,18,7	
(a) C	Choos	e an element fron	n the list for each of the followi	ing descriptions.
(i)	It is a	a noble gas.		
(ii)	It is a	a soft metal with a	a low density.	
(iii)	It ca	n form a covalent	compound with element A .	
(iv)	It ha	s a giant covalent	structure similar to diamond.	
(v)	It ca	n form a negative	ion of the type X^{3-} .	[5]
	i) Dr an Us	aw a diagram tha d the arrangemer se o to represent a	orm an ionic compound. It shows the formula of this co nt of the valency electrons aro an electron from an atom of C an electron from an atom of F .	
(i	i) Pr	edict two properti	ies of this compound.	[3]

3 The following is a list of the electron distributions of atoms of unknown elements.

2,5

element

Α

For Examiner's Use

[Total: 10]

4 The reactivity series of metals given below contains both familiar and unfamiliar elements. For most of the unfamiliar elements, which are marked *, their common oxidation states are given.

5

For Examiner's Use

* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)

Choose metal(s) from the above list to answer the following questions.

(i) Which two metals would not react with dilute hydrochloric acid? [2] (ii) Which two unfamiliar metals (*) would react with cold water? [2] (iii) What is the oxidation state of barium? [1] (iv) Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon. [1] (v) Why should you be able to predict that metals such as iron and chromium have more than one oxidation state? [1] [Total: 7]

5 Insoluble salts are made by precipitation. (a) A preparation of the insoluble salt calcium fluoride is described below. To 15 cm³ of aqueous calcium chloride, 30 cm³ of aqueous sodium fluoride is added. The concentration of both solutions is 1.00 mol / dm³. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven. (i) Complete the equation. Ca^{2+} +F⁻ \longrightarrow [2] (ii) Why is the volume of sodium fluoride solution double that of the calcium chloride solution? [1] (iii) Why is the mixture washed with distilled water? [1] (iv) Why is the solid heated? [1]

(b) The formulae of insoluble compounds can be found by precipitation reactions.

To 12.0 cm³ of an aqueous solution of the nitrate of metal T was added 2.0 cm³ of aqueous sodium phosphate, Na_3PO_4 . The concentration of both solutions was 1.00 mol/dm³. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

6

(c) (i) Sketch a graph which shows how the percentage of ammonia in the equilibrium mixture varies with pressure. Examiner's

For

Use

- 7 Hydrogen reacts with the halogens to form hydrogen halides.
 - (a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) to break one mole of a bond.

bond	bond energy in kJ/mol
H—H	+436
C <i>l</i> —C <i>l</i>	+242
H—C <i>l</i>	+431

Use the above data to show that the following reaction is exothermic.

$H-H + Cl-Cl \rightarrow 2H-Cl$

[3]

For

(b) They react with water to form acidic solutions.

 $HCl + H_2O \rightleftharpoons H_3O+ + Cl^ HF + H_2O \rightleftharpoons H_3O+ + F^-$

(i) Explain why water behaves as a base in both of these reactions.

[2]

(ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules, the rest has formed ions. In the other equilibrium, 97% of the hydrogen fluoride exists as molecules, only 3% has formed ions.

What does this tell you about the strength of each acid?

(iii) How would the pH of these two solutions differ?[1]

[Total: 8]

© UCLES 2009

8 Lactic acid can be made from corn starch.

СН₃—СН—СООН | ОН

lactic acid

It polymerises to form the polymer, polylactic acid (PLA) which is biodegradable.

(a) Suggest two advantages that PLA has compared with a polymer made from petroleum.

(b) The structure of PLA is given below.

(i) What type of compound contains the group that is circled?

(ii) Complete the following sentence.

Lactic acid molecules can form this group because they contain both an

group and an	group.	[2]

(iii) Is the formation of PLA, an addition or condensation polymerisation? Give a reason for your choice.

[2]

0620/31/M/J/09

For Examiner's Use

[1]

(c) When lactic acid is heated, acrylic acid is formed.

[Total: 13]

Quantities of chemicals, expressed in moles, can be used to find the formula of a For compound, to establish an equation and to determine reacting masses. Examiner's Use (a) A compound contains 72% magnesium and 28% nitrogen. What is its empirical formula? [2] (b) A compound contains only aluminium and carbon. 0.03 moles of this compound reacted with excess water to form 0.12 moles of $Al(OH)_3$ and 0.09 moles of CH_4 . Write a balanced equation for this reaction. [2] (c) 0.07 moles of silicon reacts with 25 g of bromine. Si + $2Br_2 \longrightarrow SiBr_4$ (i) Which one is the limiting reagent? Explain your choice. [3] (ii) How many moles of SiBr₄ are formed? [1] [Total: 8]

9

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

								Gr	oup								
I	II												IV	V	VI	VII	0
							1 H Hydrogen 1										4 H eliu 2
7 Li Lithium 3	9 Be Beryllium]				11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 No 10
23 Na Sodium	24 Mg Magnesium 12											27 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 ^{Chlorine} 17	40 A Argu 18
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 K Kryp 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr ^{Zirconium} 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn ^{Tin} 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	13 X Xen 54
133 CS Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	R Rac 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89												,			
	anthanoi Actinoid		-	140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	17 L Luter 71
Key b	X X	= relative ator (= atomic sym = proton (ator	ibol	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium	L Lawre 103

16

© UCLES 2009

|--|--|

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/32
Paper 3 (Exten	ded)		May/June 2009
			1 hour 15 minutes
Candidates and	swer on the Question Paper.		

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part questions.

For Examiner's Use					

This document consists of 15 printed pages and 1 blank page.

2

Some grass is crushed and mixed with the solvent, propanone. The colour pigments are

(a) (i) Draw a labelled diagram to describe how you could show that there is more than

- [3]
 (ii) Given a pure sample of chlorophyll, how could you show that the green solution from the grass contained chlorophyll?
 - (b) Explain the role of chlorophyll in green plants.

extracted to give a deep green solution.

one coloured pigment in the green solution.

[3]

[Total: 8]

For

Examiner's Use

1

2 The results of experiments on electrolysis using inert electrodes are given in the table.

Complete the table; the first line has been completed as an example.

electrolyte change at negative change at positive change to electrolyte electrode electrode molten lead(II) lead formed bromine formed used up bromide lithium formed chlorine formed used up dilute aqueous sodium chloride aqueous copper(II) sulfate hydrogen formed bromine formed potassium hydroxide formed

[Total: 8]

l

3 The following is a list of the electron distributions of atoms of unknown elements.

2.6

2,8,4

2,8,8,2

2,8,18,8

element

Α

В

С

D

electron distribution

4 The reactivity series of metals given below contains both familiar and unfamiliar elements. For most of the unfamiliar elements, which are marked *, their common oxidation states are given.

5

For Examiner's Use

* barium	Ва
* lanthanum	La (+3)
magnesium	
zinc	
* chromium	Cr (+2), (+3), (+6)
iron	
copper	
* palladium	(+2)

Choose metal(s) from the above list to answer the following questions.

(i) Which two metals would not react with dilute hydrochloric acid? [2] (ii) Which two unfamiliar metals (*) would react with cold water? [2] (iii) What is the oxidation state of barium? [1] (iv) Name an unfamiliar metal (*) whose oxide cannot be reduced by carbon. [1] (v) Why should you be able to predict that metals such as iron and chromium have more than one oxidation state? [1] [Total: 7]

5 Insoluble salts are made by precipitation. For Examiner's Use (a) A preparation of the insoluble salt iron fluoride is described below. To 15 cm³ of aqueous iron(III) chloride, 45 cm³ of aqueous sodium fluoride is added. The concentration of both solutions is 1.00 mol / dm³. The mixture is filtered and the precipitate washed with distilled water. Finally, the precipitate is heated in an oven. (i) Complete the equation. Fe³⁺ +F⁻ — [2] (ii) Why is the volume of sodium fluoride solution three times that of the iron(III) chloride solution? [1] (iii) Why is the mixture washed with distilled water? [1] (iv) Why is the solid heated? [1]

(b) The formulae of insoluble compounds can be found by precipitation reactions.

To 18.0 cm^3 of an aqueous solution of the nitrate of metal T was added 2.0 cm^3 of aqueous sodium phosphate, Na₃PO₄. The concentration of both solutions was $1.00 \text{ mol}/\text{dm}^3$. When the precipitate had settled, its height was measured.

The experiment was repeated using different volumes of the phosphate solution. The results are shown on the following graph.

- Ammonia is manufactured by the Haber process. For Examiner's Use $3H_2(g) \rightleftharpoons 2NH_3(g)$ the forward reaction is exothermic $N_2(g) +$ (a) (i) Name the raw materials from which nitrogen and hydrogen are obtained. nitrogen from [1] hydrogen from [1] (ii) Name the catalyst used in this process. [1] (iii) What is the most important use of ammonia? [1]
 - (b) The following graph shows how the percentage of ammonia in the equilibrium mixture changes with pressure.

(i) Explain the term equilibrium.

[2] (ii) How does the percentage of ammonia vary with pressure? [1]

.....

© UCLES 2009

6

(c) (i) Sketch a graph which shows how the percentage of ammonia in the equilibrium mixture varies with temperature. Examiner's

.....

[Total: 10]

[2]

For

Use

- 7 Hydrogen reacts with the halogens to form hydrogen halides.
 - (a) Bond energy is the amount of energy, in kJ, that must be supplied (endothermic) to break one mole of a bond.

For Examiner's Use

bond	bond energy in kJ/mol
H—H	+436
F—F	+158
H—F	+562

Use the above data to show that the following reaction is exothermic.

H—H + F—F \rightarrow 2H—F

 [3]

0620/32/M/J/09

(b) They react with water to form acidic solutions.

(i) Explain why water behaves as a base in both of these reactions.

(ii) At equilibrium, only 1% of the hydrogen chloride exists as molecules, the rest has formed ions. In the other equilibrium, 97% of the hydrogen fluoride exists as molecules, only 3% has formed ions.
What does this tell you about the strength of each acid?
[2]
(iii) How would the pH of these two solutions differ?

[Total: 8]

© UCLES 2009

8 Lactic acid can be made from corn starch.

It polymerises to form the polymer, polylactic acid (PLA) which is biodegradable.

(a) Suggest two advantages that PLA has compared with a polymer made from petroleum.

(b) The structure of PLA is given below.

(i) What type of compound contains the group that is circled?

(ii) Complete the following sentence.

Lactic acid molecules can form this group because they contain both an

group and an	group.	[2]

(iii) Is the formation of PLA, an addition or condensation polymerisation? Give a reason for your choice.

[2]

For Examiner's Use

[1]

(c) When lactic acid is heated, acrylic acid is formed.

[Total: 13]

9 Quantities of chemicals, expressed in moles, can be used to find the formula of a Examiner's compound, to establish an equation and to determine reacting masses. (a) A compound contains 72% magnesium and 28% nitrogen. What is its empirical formula? [2] (b) A compound contains only aluminium and carbon. 0.03 moles of this compound reacted with excess water to form 0.12 moles of Al(OH)₃ and 0.09 moles of CH₄. Write a balanced equation for this reaction. [2] (c) 0.08 moles of silicon reacts with 7.2g of fluorine. Si + $2F_2 \longrightarrow SiF_4$ (i) Which one is the limiting reagent? Explain your choice. [3] (ii) How many moles of SiF₄ are formed? [1] [Total: 8]

For

Use

BLANK PAGE

0620/32/M/J/09

								Gr	oup								
Ι	II											III	IV	V	VI	VII	0
1 H Hydrogen 1													4 He Helium				
7 Li Lithium 3	9 Be Beryllium							-				11 B 5	12 C Carbon 6	14 N Nitrogen	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
23 Na Sodium	24 Mg Magnesiun 12	n										27 A1 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine 17	40 Ar Argon 18
39 K Potassiun 19	m 40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu ^{Copper} 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidiur 37	n Strontium 38	89 Y Yttrium 39	91 Zr ^{Zirconium} 40	93 Nb _{Niobium} 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
133 CS Caesiun 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au ^{Gold}	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium	n Radium 88	227 Acc Actinium 89 †															
*58-71 Lanthanoid series †90-103 Actinoid series			140 Ce _{Cerium} 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm ^{Thulium} 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
a a = relative atomic mass Key X b b = proton (atomic) number		bol	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium	Lr Lawrenciun 103	