MMM. Xiremedaders. Com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	31

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded.
 Example Is the reaction exothermic or endothermic? Give a reason for your choice.
 Mark scheme exothermic [1]
 - **COND** a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark.
 - (.....) is used to denote material that is not specifically required.
- OR designates alternative and independent ways of gaining the marks for the question.
 or indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2009	0620	31	
1	(a) (i)	(a) (i) argon or krypton or helium Accept xenon and radon even though percentages are very small NOT hydrogen				
	(ii)	(ii) water and carbon dioxide				
	(b) (i)		ur dioxide or lead compounds or CFCs or methane or nburnt hydrocarbons or ozone etc.	particulates	[1]	
	(ii)	(ii) incomplete combustion of a fossil fuel or a named fuel or a fuel that contains carbon				
	(iii)		gh temperature or inside engine gen and oxygen (from the air) react		[1] [1]	
	(iv)		anges carbon monoxide to carbon dioxide es of nitrogen to nitrogen		[1] [1]	
			symbol or word equation of the type: $0 + 2CO \rightarrow CO_2 + N_2$		[2]	
		diox	a redox explanation – the oxides of nitrogen oxidiso ide, are reduced to nitrogen	e carbon monox	ide to carbon [1] [1]	
			$2NO \rightarrow N_2 + O_2$ $2CO + O_2 \rightarrow 2CO_2$		[1] [1]	
					[Total: 10]	
2	. , .	< 7 ample			[1] [1]	
	pH > 7 example NOT amphoteric oxides Be, A <i>l</i> , Zn, Pb, Sn etc					
	exa the	two r	H₂O, CO, NO marks are not linked, mark each independently photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1] [1]	
	(b) (i)	shov	ws both basic and acidic properties		[1]	
	(ii)		med strong acid med alkali		[1] [1]	

© UCLES 2009

[Total: 9]

Page 4		ļ	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2009	0620	31
3	(a)	(i)		or roast or burn <u>in air</u> d both points for mark		[1]
		(ii)	or 2	$+ C \rightarrow Zn + CO$ $ZnO + C \rightarrow 2Zn + CO_2$ alanced ONLY [1]		[2]
	(b)	it lo zind	ses e	ore reactive electrons and forms ions in preference to iron odes not iron c rusts		[1] [1] [1]
		the the	elect	loses electrons and forms ions rons move on to the iron cannot be oxidised or it cannot rust or it cannot lose el correct Chemistry that includes the above ideas	ectrons	[1] [1] [1]
	(c)	(i)		atoms change into ions, (the zinc dissolves) per(II) ions change into atoms, (becomes plated with c	opper)	[1] [1]
		(ii)	ions elec	trons		[1] [1]
						[Total: 10]
4	(a)	diffe or e	differe	M _r or ozone molecules heavier than oxygen molecules ent densities or oxygen molecules move faster than oxygen is lighter or ozone heavier		[1] [1]
				ional distillation e different boiling points		[1] [1]
	(b)	(i)		colourless (solution) rown (solution)		[1] [1]
		(ii)		ses electrons (to form iodine molecules) t be in terms of electron transfer NOT oxidation number	er	[1]
		(iii)	-	(electrons) are accepted by ozone is an electron acceptor		[1]

			1000E October/itovernber 2003	0020	01
	(c)	(i)	correct structural skeleton COND 4bp around both carbon atoms 2bp and 2nbp around sulfur atom NOTE marks 2 and 3 can only be awarded if mark 1 has be	een scored	[1] [1] [1]
		(ii)	water carbon dioxide sulfur dioxide all three any two [1] Accept correct formulae		[2]
					[Total: 11]
5	(a)	(i)	strong hard light or low density high melting point or high fixed points Accept high strength to weight ratio for [2] it includes marks 1 and 3 any THREE		[3]
		(ii)	silicon four		[1] [1]
	(b)	eac eac lool "tet	gram to include: th germanium atom bonded 4 oxygen atoms th oxygen to 2 germanium atoms ks or stated to be tetrahedral rahedral" scores mark even if diagram does not look tetrahe ependent marking of three points	edral	[1] [1] [1]
	(c)	(i)	structural formula of Ge ₄ H ₁₀ all bonds shown		[1]
		(ii)	germanium(IV) oxide water		[1] [1]
					[Total: 11]

IGCSE - October/November 2009

Syllabus

0620

Paper

31

Page 5

	10002 00:0001/11010111001 2000	0020				
(a) (i)	burn sulfur in air or oxygen or heat a metal sulfide in air	[1]				
(ii)	bleach for wood pulp/cloth/straw or preserve food or sterilis or making wine or fumigant or refrigerant Accept making paper	ing [1]				
(iii)	vanadium(V) oxide accept vanadium oxide or V_2O_5 or vanadium pentoxide oxidation state not essential but if given it has to be (V)	[1]				
(iv)	rate too slow or rate not economic	[1]				
(v)	reaction too violent or forms a mist	[1]				
(b) (i)	add water to yellow powder or to anhydrous salt it would go green	[1] [1]				
(ii)	change from purple or pink to colourless NOT clear	[1] [1]				
(iii)	reacts with oxygen in air	[1]				
nur ma ma nur vol lf n	mber of moles of FeSO ₄ used = $9.12/152 = 0.06$ mber of moles of Fe ₂ O ₃ formed = $0.03*$ ss of one mole of Fe ₂ O ₃ = 160 g ss of iron(III) oxide formed = $0.03 \times 160 = 4.8 \text{ g}$ mber of moles of SO ₃ formed = 0.03 ume of sulfur trioxide formed = $0.03 \times 24 = 0.72 \text{ dm}^3$ hass of iron(III) oxide greater than 9.12 g , then only marks 1 and 9.12 g , then only marks 1 and 9.12 g .					
	Apply ecf to number of moles of $Fe_2O_3^*$ when calculating volume of sulfur trioxide. Do not apply ecf to integers					

IGCSE - October/November 2009

Syllabus

0620

Paper

31

Page 6

6

[Total: 16]

Page 7		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2009	0620	31
(a) (i)	heat catal			[1] [1]
(ii)	alker	quation that gives: ne + alkane kene + alkene + hydrogen		[1]
	a cor	rrect and balanced equation for the cracking of decane,	C ₁₀ H ₂₂ but not b	out-1-ene [1]
(iii)	wate	er or steam		[1]
(b) (i)		$_{9}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ ly error is balancing the oxygen atoms		[2] [1]
(ii)		nol + methanoic acid → butyl methanoate + water ect products or reactants ONLY		[2] [1]
(c) (i)	acce pena	ect structural formulae [1] each ept either propanol and –OH in alcohol and acid alise once for CH ₃ type diagrams either C ₃ H ₈ O or C ₃ H ₆ O ₂ [0]		[2]
(ii)	to co	onserve petroleum or reduce greenhouse effect		[1]
(d) hav	e san	ne boiling point		[1]
				[Total: 13]

7