MMM. Aremedaders. com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2009 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	32

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded.
 Example Is the reaction exothermic or endothermic? Give a reason for your choice.
 Mark scheme exothermic [1]
 - **COND** a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.
- In the mark scheme if a word **or** phrase is underlined it (**or** an equivalent) is required for the award of the mark.
 - (.....) is used to denote material that is not specifically required.
- OR designates alternative and independent ways of gaining the marks for the question.
 or indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper		
			IGCSE – October/November 2009	0620	32		
1	(a) (i)	(a) (i) argon or krypton or helium Accept xenon and radon even though percentages are very small NOT hydrogen					
	(ii)	wate	er and carbon dioxide		[2]		
	(b) (i)		on monoxide or lead compounds or CFCs or methand nburnt hydrocarbons or ozone	e or particulates	[1]		
	(ii)		a fossil fuel contains sulfur		[1] [1]		
	(iii)		gh temperature or inside engine gen and oxygen (from the air) react		[1] [1]		
	(c) liqu		I distillation		[1] [1]		
					[Total: 10]		
2		a) pH < 7 example					
	exa	> 7 ample)T am	photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1] [1]		
	exa the	pH = 7 example H_2O , CO , NO the two marks are not linked, mark each independently NOT amphoteric oxides Be, Al , Zn , Pb , Sn etc.					
	(b) (i)	shov	vs both basic and acidic properties		[1]		
	(ii)		ic reacts with sodium hydroxide only hoteric reacts with both reagents		[1] [1]		
		OR	only amphoteric oxide reacts with hydrochloric acid		[2]		
					[Total: 9]		
3	(a) (i)		/roast/burn <u>in air</u> d both points for mark		[1]		
	(ii)	or 2	$+ C \rightarrow Zn + CO$ $ZnO + C \rightarrow 2Zn + CO_2$ alanced ONLY [1]		[2]		

	Page 4		Mark Scheme: Teachers' Version	Syllabus	Paper	
			IGCSE – October/November 2009	0620	32	
	(b) i	[1] [1] [1]				
	1 1	OR zinc loses electrons and forms ions the electrons move on to the iron the iron cannot be oxidised or it cannot rust or it cannot lose electrons CREDIT correct Chemistry that includes the above ideas				
	(c)		nc atoms change into ions, (the zinc dissolves) pper(II) ions change into atoms, (becomes plated with c	opper)	[1] [1]	
	(ii) ior ele	ns ectrons		[1] [1]	
					[Total: 10]	
4	. ,	(a) diffusion different M_r or ozone molecules heavier than oxygen molecules				
			erent densities or oxygen molecules move faster than oz xygen is lighter or ozone heavier	one molecules	[1]	
		OR fractional distillation they have different boiling points				
	(b)		m colourless (solution) brown (solution)		[1] [1]	
	(ii) I⁻∣	oses electrons (it is oxidised)		[1]	
	(i	•	ey are accepted by ozone ozone is an electron acceptor		[1]	
	(c)	ca su all	nter rbon dioxide Ifur dioxide three y two [1]		[2]	
	(Ć	rrect structural skeleton OND 4bp around both carbon atoms p and 2nbp around sulfur atom		[1] [1] [1]	
					[Total: 11]	

Mark Scheme: Teachers' version

Syllabus

Paper

Page 5		j	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2009	0620	32
5	hard ligh high Acc it in		high Acco			[3]
		(ii)	diag eithe "tetra	ram 1 four silicons around one carbon ram 2 four carbons around one silicon er diagram looks or stated to be tetrahedral ahedral" scores mark even if diagram does not look telependent marking of three points	trahedral	[1] [1] [1]
	(b)	eac	h ger	to include manium atom bonded 4 oxygen atoms gen to 2 germanium atoms		[1] [1]
	(c)	(i)	struc	ctural formula of Ge ₃ H ₈ all bonds shown		[1]
		(ii)	gern wate	nanium oxide er		[1] [1]
						[Total: 11]
6	(a)	(i)		or Texas or Louisiana, Japan anoes, natural gas, petroleum		[1]
	(ii)		or m	ch for wood pulp/cloth/straw or preserve food or sterili naking wine or fumigant or refrigerant ept making paper	sing	[1]
		(iii)	or V	adium(V) oxide or vanadium oxide or vanadium pentox ${}_2{\rm O}_5$ oxidation state not essential but if given has to be (V)	iide	[1]
		(iv)	rate	too slow or rate not economic		[1]
		(v)	reac	ction too violent or forms a mist		[1]
	(b)	(i)		water to yellow powder or anhydrous salt ould go green		[1] [1]
		(ii)		nge from purple or pink blourless NOT clear		[1] [1]
		(iii)	reac	ets with <u>oxygen</u> in air		[1]

	Page 6		;	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2009	0620	32	
	(c)	number of moles of FeSO ₄ used = $12.16/152 = 0.08^*$ number of moles of Fe ₂ O ₃ formed = 0.04 mass of one mole of Fe ₂ O ₃ = $160 \mathrm{g}$ mass of iron(III) oxide formed = $0.04 \times 160 = 6.4 \mathrm{g}$ number of moles of gases formed = $0.08 \times 24 = 1.92 \mathrm{dm}^3$					
		lf m	nass c	of iron(III) oxide greater than 12 g, then only marks 1 a	nd 2 available		
		Apply ecf to number of moles of FeSO ₄ * when calculating volume of sulfur trioxide. Do not apply ecf to integers					
						[Total: 16]	
7	(a)	(i)	heat cata			[1] [1]	
		(ii)		ation that gives: ne + alkane or alkene + alkene + hydrogen		[1]	
		a correct and balanced equation for the cracking of decane, C ₁₀ H ₂₂ but not but-1-e				ut-1-ene [1]	
		(iii)	wate	er or steam		[1]	
				$_{9}OH + 6O_{2} \rightarrow 4CO_{2} + 5H_{2}O$ Ny error is balancing the oxygen atoms [1]		[2]	
		(ii)		anol + propanoic acid → butyl propanoate + water ect products or reactants ONLY [1]		[2]	
	(c)	(i)	pena	ect structural formulae [1] each alise once for CH ₃ type diagrams C ₃ H ₈ O [0]		[2]	
		(ii)	to co	onserve petroleum or reduce greenhouse effect		[1]	
	(d)	hav	∕e sar	me boiling point		[1]	
						[Total: 13]	