1 You are going to investigate the solubility of salt \mathbf{A} in water at various temperatures.
Read all the instructions below carefully before starting the experiments.

Instructions

Experiment 1

You are provided with a clean boiling tube containing 12 g of \mathbf{A}.
Fill the burette provided with distilled water and add $10.0 \mathrm{~cm}^{3}$ of water to the boiling tube.
Heat the mixture of salt \mathbf{A} and water carefully until all of the solid has dissolved.
You will have to boil the solution gently.
Remove the boiling tube from the heat and allow the solution to cool. Stir the solution gently with the thermometer.

Note the temperature at which crystals first appear and record the temperature in the table.

Keep the boiling tube and its contents for the remaining experiments in this question.

Experiment 2

From the burette, add $2.0 \mathrm{~cm}^{3}$ more of the water into the boiling tube and contents from Experiment 1.

Repeat the experiment exactly as before to find the temperature at which crystals first appear.
It may help if the boiling tube is dipped for short periods of time in a beaker of cold water to speed up the cooling.
Record, in the table, the total volume of water in the boiling tube and the temperature at which crystals first appear.

Experiment 3

From the burette, add $2.0 \mathrm{~cm}^{3}$ more of the water into the boiling tube and contents from Experiment 2.
Repeat the experiment exactly as before and record, in the table, the total volume of water used and the temperature at which crystals first appear.

Continue this procedure for Experiment 4 with one more addition of $2.0 \mathrm{~cm}^{3}$ of water. Note all the results in the table.

At the end of Experiment 4, the total volume of water in the boiling tube will be $16.0 \mathrm{~cm}^{3}$.

Table of results

experiment	total volume of water $/ \mathrm{cm}^{3}$	temperature at which crystals first appear $/{ }^{\circ} \mathrm{C}$
1	10.0	
2		
3		
4		

(a) Plot your results on the grid below and draw a straight line graph.

[6]
(b) How did you know when salt \mathbf{A} was completely dissolved in the water?
\qquad
(c) From your graph, find the temperature at which crystals of \mathbf{A} would first appear if the total volume of water in the solution were $9.0 \mathrm{~cm}^{3}$.
Show clearly on the graph how you worked out your answer.
\qquad ${ }^{\circ} \mathrm{C}$
(d) Salt \mathbf{B} is more soluble in water than salt \mathbf{A}. Sketch on the grid the graph you would expect for \mathbf{B}. Label this graph.
(e) Suggest, with a reason, how the results would be different if 6 g of salt \mathbf{A} were used instead of 12 g .
\qquad
\qquad
(f) Explain one improvement you could make to the experimental procedure to obtain more accurate results in this investigation.
improvement \qquad
explanation [2]

2 You are provided with solid \mathbf{W} and two solutions, \mathbf{X} and \mathbf{Y}.
Carry out the following tests on the solid and the solutions, recording all of your observations in the table.
Conclusions must not be written in the table.

For

Examiner's Use
(d) What conclusion can you make about solid W?
\qquad
(e) What conclusions can you make about solution \mathbf{X} ?
\qquad
\qquad
(f) Identify solution \mathbf{Y}.
\qquad

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$	add dilute acid	effervescence, carbon dioxide produced
chloride $\left(\mathrm{C} l^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
iodide $\left(I^{-}\right)$ [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	yellow ppt.
nitrate $\left(\mathrm{NO}_{3}^{-}\right)$ [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right.$ [in solution]	acidify with dilute nitric acid, then aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
aluminium $\left(\mathrm{Al}^{3+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., insoluble in excess
ammonium $\left(\mathrm{NH}_{4}^{+}\right)$	ammonia produced on warming	-
calcium $\left(\mathrm{Ca}^{2+}\right)$	white ppt., insoluble in excess	no ppt., or very slight white ppt.
copper $\left(\mathrm{Cu}^{2+}\right)$	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron $(\mathrm{II})\left(\mathrm{Fe}^{2+}\right)$	green ppt., insoluble in excess	green ppt., insoluble in excess
iron $(\mathrm{III})\left(\mathrm{Fe}^{3+}\right)$	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc $\left(\mathrm{Zn}^{2+}\right)$	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia $\left(\mathrm{NH}_{3}\right)$	turns damp red litmus paper blue
carbon dioxide $\left(\mathrm{CO}_{2}\right)$	turns limewater milky
chlorine $\left(\mathrm{Cl}_{2}\right)$	bleaches damp litmus paper
hydrogen $\left(\mathrm{H}_{2}\right)$	'pops' with a lighted splint
oxygen $\left(\mathrm{O}_{2}\right)$	relights a glowing splint

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

 University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

