## MARK SCHEME for the October/November 2010 question paper

## for the guidance of teachers

## 0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations

| Page 2 |         | 2                                                                                                                                                        | Mark Scheme: Teachers' version                                                                                                                                         | Syllabus         | Paper                    |  |  |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|--|--|
|        |         |                                                                                                                                                          | IGCSE – October/November 2010                                                                                                                                          | 0620             | 31                       |  |  |
| 1      | (a) (i) | same number of protons and electrons                                                                                                                     |                                                                                                                                                                        |                  |                          |  |  |
|        | (ii)    | ) all have the same number of protons / same proton number / same atomic number                                                                          |                                                                                                                                                                        |                  |                          |  |  |
|        | (iii)   |                                                                                                                                                          | e electrons than protons<br>ber of protons and electrons not equal <b>ONLY</b> [1]                                                                                     |                  | [2]                      |  |  |
|        | (iv)    | (iv) same number of protons (and electrons) / same proton number / same atomic nur different number of neutrons / different mass number / nucleon number |                                                                                                                                                                        |                  |                          |  |  |
|        | (b) (i) | 2 + 8                                                                                                                                                    | 3 + 5                                                                                                                                                                  |                  | [1]                      |  |  |
|        | (ii)    | 3/5                                                                                                                                                      |                                                                                                                                                                        |                  | [1]                      |  |  |
|        | (iii)   | / nee<br>/ bec                                                                                                                                           | metal because it accepts electrons<br>eds 3e to complete outer energy level<br>cause it is in Group V or 5e in outer shell<br>e need both non-metal and reason for [1] |                  | [1]                      |  |  |
|        |         |                                                                                                                                                          |                                                                                                                                                                        |                  | [Total: 9]               |  |  |
| 2      | (a) (i) |                                                                                                                                                          | er / stronger / any sensible suggestion which relates<br>stays sharp longer / cuts better / more corrosion res                                                         |                  | ies for purpose<br>[1]   |  |  |
|        | (ii)    | zinc                                                                                                                                                     |                                                                                                                                                                        |                  | [1]                      |  |  |
|        | (b) (i) | lattic                                                                                                                                                   | be                                                                                                                                                                     |                  | [1]                      |  |  |
|        | (ii)    | with                                                                                                                                                     | lar pattern of one type of atom<br>different atom interspersed<br>show the difference – size, shading, label etc.                                                      |                  | [1]<br>[1]               |  |  |
|        | (iii)   |                                                                                                                                                          | change its shape by force / plastically deform / car<br>d etc.                                                                                                         | n be hammered ir | nto sheets / can<br>[1]  |  |  |
|        | (iv)    | con<br>or m                                                                                                                                              | cles / ions / atoms / layers<br>d can slide past each other<br>netallic bond is non-directional<br>cles can move past each other                                       |                  | [1]<br>[1]<br>[1]<br>[1] |  |  |

| Page 3 |       | 3                             | Mark Scheme: Teachers' version                                                                                                                              | Syllabus             | Paper                    |
|--------|-------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|
|        |       |                               | IGCSE – October/November 2010                                                                                                                               | 0620                 | 31                       |
| (c)    | ) (i) | not<br>acce<br>not            | V) oxide + carbon → tin + carbon dioxide<br>carbon monoxide as a reductant<br>ept carbon monoxide as a product<br>tin(IV)<br>ept correct symbol equation    |                      | [1]                      |
|        | (ii)  | wate<br>carb                  | r<br>on dioxide                                                                                                                                             |                      | [1]<br>[1]               |
|        | (iii) | (pure<br><u>impu</u><br>elect | ect labels for<br>e) copper cathode<br><u>ire copper anode</u><br>crolyte copper(II) sulfate / any soluble copper(II) sal<br>els on electrodes reversed [0] | t / Cu <sup>2+</sup> | [1]<br>[1]<br>[1]        |
|        | (iv)  |                               | s / pipes / jewellery / nails / roofing / ammunition<br>oture                                                                                               | n / coins / cookv    | vare / catalyst /<br>[1] |
|        |       |                               |                                                                                                                                                             |                      | [Total: 15]              |
| 3      | (i)   | cher                          | nical                                                                                                                                                       |                      | [1]                      |
|        | (ii)  |                               | right to left<br>hrough salt bridge                                                                                                                         |                      | [1]                      |
|        | (iii) | -                             | + 2e $\rightarrow$ 2Br-<br>r- as product [1]                                                                                                                |                      | [2]                      |
|        | (iv)  | / bec                         | <u>ction because electron gain</u><br>cause oxidation number decreases<br>I both points                                                                     |                      | [1]                      |
|        | (v)   | Fe <sup>3+</sup>              |                                                                                                                                                             |                      | [1]                      |
|        | (vi)  | e.g.                          | correct discussion of the reactivity of the halogens<br>the more reactive the halogen the higher the voltag<br>petter conductor                             | e                    | [1]                      |

[Total: 7]

|   | Page 4 |       |                | Ма                                           | ark Schem                            | e: Teachers                                                | s' version                        | Syllabus     | Paper                   |
|---|--------|-------|----------------|----------------------------------------------|--------------------------------------|------------------------------------------------------------|-----------------------------------|--------------|-------------------------|
|   |        |       |                | IG                                           | CSE – Octo                           | ober/Noven                                                 | nber 2010                         | 0620         | 31                      |
| 4 | (a)    | (i)   | nitro          | gen 2+5                                      |                                      |                                                            |                                   |              | [1]                     |
|   |        | (ii)  |                | ts three ele<br>omplete en                   |                                      |                                                            |                                   |              | [1]<br>[1]              |
|   | (b)    | (i)   | expe           | ensive met                                   | al / iron che                        | eaper / bette                                              | er catalyst                       |              | [1]                     |
|   |        | (ii)  | -              | •                                            |                                      | e with smalle<br>oduct / amm                               | er volume / fewer i<br>ionia side | moles        | [1]<br>[1]              |
|   |        | (iii) | -              | cled / sent<br>e <b>pt</b> used ag           | over cataly<br>gain                  | vst again                                                  |                                   |              | [1]                     |
|   |        | (iv)  |                | antage<br>dvantage                           | high yield<br>slow react             | tion rate etc                                              |                                   |              | [1]<br>[1]              |
|   |        |       |                |                                              |                                      |                                                            |                                   |              | [Total: 9]              |
| 5 | (a)    | (i)   |                | y (simple)<br>mer molec                      |                                      | form one                                                   | (large) molecule                  | / monomer mo | lecules form one<br>[1] |
|   |        | (ii)  |                | tion - polyr<br><b>∋pt</b> - nX →            |                                      | nly product                                                |                                   |              | [1]                     |
|   |        |       |                | lensation p                                  |                                      |                                                            | olecules formed                   |              | [1]                     |
|   | (b)    | (i)   |                | $I_{26} \rightarrow C_8 H_1$<br>of ther corr | $_{8} + 2C_{2}H_{4}$<br>rect version | 1                                                          |                                   |              | [1]                     |
|   |        | (ii)  | / eth<br>/ was | ene more<br>ste half chl                     | readily avai                         | range of pro<br>ilable than e<br>rdrogen chlo<br>an ethane | ethane                            |              | [1]                     |
|   |        | (iii) |                | trolysis<br>eous sodiu                       | m chloride                           |                                                            |                                   |              | [1]<br>[1]              |
|   |        | (iv)  |                | t have <b>thre</b><br>d continuat            | e correct u                          | inits                                                      |                                   |              | [1]<br>[1]              |
|   |        |       |                |                                              | 2–CH(C <i>l</i> ))r                  | ٦—                                                         |                                   |              | [Total: 9]              |
|   |        |       |                |                                              |                                      |                                                            |                                   |              |                         |

| Page 5 |         | 5                                                                                                                                                  | Mark Scheme: Teachers' version                                                                                                                                                                                            | Syllabus          | Paper                       |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
|        |         |                                                                                                                                                    | IGCSE – October/November 2010                                                                                                                                                                                             | 0620              | 31                          |
| 6      | (a) (i) | (a) (i) does not form compounds / does not accept and does not lose electr<br>shell/has 8e in outer shell / it is a Noble Gas / it is in Group 0/8 |                                                                                                                                                                                                                           |                   | s / has full outer<br>[1]   |
|        | (ii)    |                                                                                                                                                    | Il number of outer electrons / lose electrons then po<br>e number of outer electrons / gain electrons then ne                                                                                                             |                   | [1]<br>[1]                  |
|        | (iii)   |                                                                                                                                                    | <b>two</b> from nitrogen, oxygen and fluorine<br>ept symbols / molecular formulae                                                                                                                                         |                   | [1]                         |
|        | (b) (i) | zinc                                                                                                                                               | / aluminium / lead / tin / chromium                                                                                                                                                                                       |                   | [1]                         |
|        | (ii)    |                                                                                                                                                    | e precipitate                                                                                                                                                                                                             |                   | [1]                         |
|        |         |                                                                                                                                                    | ipitate dissolves / colourless solution forms / forms a<br>uble in excess                                                                                                                                                 | a clear solution  | [1]                         |
|        | (c) (i) | LiF<br>NF₃                                                                                                                                         |                                                                                                                                                                                                                           |                   | [1]<br>[1]                  |
|        | (ii)    | LiF i<br>/ LiF<br>as lio<br>LiF i                                                                                                                  | has higher mp / bp<br>s a (crystalline) solid, NF <sub>3</sub> is probably a gas / a liquid<br>i is less volatile<br>quids only LiF conducts<br>s soluble in water, NF <sub>3</sub> is not<br>n both solids LiF is harder | d                 |                             |
|        |         | any                                                                                                                                                | two                                                                                                                                                                                                                       |                   | [2]                         |
|        | (iii)   | $NF_3$                                                                                                                                             | s an ionic compound<br>is a covalent/molecular compound<br>tating that one is ionic and the other covalent [1] wit                                                                                                        | hout specifying w | [1]<br>[1]<br>hich is which |
|        |         |                                                                                                                                                    |                                                                                                                                                                                                                           |                   | [Total: 13]                 |
| 7      | (i)     | ozor                                                                                                                                               | nane / water vapour / oxides of nitrogen / hydroflu<br>ne<br>sulfur dioxide                                                                                                                                               | uorocarbons / pe  | rfluorocarbons /<br>[1]     |
|        | (ii)    | prod                                                                                                                                               | g organisms / plants and animals / cells<br>l <u>uce energy</u> (from food / glucose / carbohydrates)<br>forms carbon dioxide (could be in an equation)                                                                   |                   | [1]<br>[1]<br>[1]           |
|        | (iii)   | / cro                                                                                                                                              | n growing the crop removed carbon dioxide from atr<br>p photosynthesised and used carbon dioxide<br>bustion returned the carbon dioxide                                                                                   | mosphere          | [1]<br>[1]                  |
|        | (iv)    | incre                                                                                                                                              | eased combustion<br>ssil fuels / named fossil fuel                                                                                                                                                                        |                   | [1]<br>[1]                  |
|        |         | less                                                                                                                                               | eforestation<br>photosynthesis<br>greater population                                                                                                                                                                      |                   | [1]<br>[1]                  |
|        |         |                                                                                                                                                    | g. sater population                                                                                                                                                                                                       |                   | [Total: 8]                  |

| Page 6 |                                                                      | Mark Scheme: Teachers' version                                                                                                                                                                                                                                                                                                                                                                               | Syllabus  | Paper          |  |  |  |
|--------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--|--|--|
|        |                                                                      | IGCSE – October/November 2010                                                                                                                                                                                                                                                                                                                                                                                | 0620      | 31             |  |  |  |
| 3      | (partially<br>allow to<br>dry cryst<br>"dry" on<br>evaporat          | ntrifuge / decant<br>) evaporate / heat / boil<br>crystallise / cool / let crystals form<br>als / dry between filter paper / leave in a warm pla<br>its own must be a verb<br>te to dryness only marks 1 and 2<br>scuss residue only mark 1                                                                                                                                                                  | ce to dry | [1<br>[1<br>[1 |  |  |  |
| (1     | number of<br>number of<br>mass of<br>maximur<br>accept 9<br>mark ecf | ) number of moles of HCl used = $0.04 \times 2 = 0.08$<br>number of moles CoCl <sub>2</sub> formed = $0.04$<br>number of moles CoCl <sub>2</sub> .6H <sub>2</sub> O formed = $0.04$<br>mass of one mole of CoCl <sub>2</sub> .6H <sub>2</sub> O = 238 g<br>maximum yield of CoCl <sub>2</sub> .6H <sub>2</sub> O = $9.52g$<br>accept 9.5 g<br>mark ecf to moles of HCl<br>do <b>not</b> mark ecf to integers |           |                |  |  |  |
|        | to show                                                              | that cobalt(II) carbonate is in excess                                                                                                                                                                                                                                                                                                                                                                       |           |                |  |  |  |
|        | number                                                               | of moles of HC <i>l</i> used = 0.08 must use value above                                                                                                                                                                                                                                                                                                                                                     | e ecf     |                |  |  |  |

number of moles of HCl used = 0.08 must use value above **ect** mass of one mole of  $\text{CoCO}_3 = 119\text{g}$ number of moles of  $\text{CoCO}_3$  in 6.0g of cobalt(II) carbonate = 6.0/119 = 0.050 [1] reason why cobalt(II) carbonate is in excess 0.05 > 0.08/2 [1]

[Total: 10]