

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Teachers' version	Syllabus	Paper
			IGCSE – M	ay/June 2011	0620	31
1	(a)	F or	B diffusion / <u>fractional</u> disti	llation		[1]
	(b)	A	simple distillation			[1]
	(c)	D	chromatography			[1]
	(d)	Е	filtration			[1]
	(e)	С	evaporation			[1]
	(f)	в	fractional distillation			[1]
2	(a)	()	hotosynthesis or a photoche ot an example, question re ot devices which convert lic	quires a process		[1]
		(ii)	ell ccept battery ot generator			[1]
	(b)	()	orrect formula			[1]
			ond following marks conditi covalent mark 1 only prrect charges x and 2o around anion o NOT penalise for incorrect nore electrons around pota	ct coding		[1] [1]
		(ii)	orrect formula			[1]
			ionic mark 1 only ond bp and 2 nbp around selen bp and 3 nbp around both			[1] [1]
			soluble in water, covalent organic solvents arder ny two	point / less volatile ueous, covalent compound is not / ionic insoluble in o nparison between the ion	rganic solvents, o	[2]

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – May/June 2011	0620	31	
	(c)	base not alkali accepts a proton accepts hydrogen ion / H ⁺ only [1] proton and H ⁺ [2]					
3	(a)	any four max 4 carbon forms carbon dioxide / carbon monoxide this is a gas it escapes / blown out / diffuses silicon forms silicon(IV) oxide / silica				[1] [1] [1]	
		<pre>/ silicon(IV) oxide present in impure iron silicon(IV) oxide reacts with calcium oxide to form slag or calcium silicate slag removed from surface accent skimmed, synbologic poured off</pre>				[1] [1]	
		accept skimmed, syphoned, poured offmnot tappedmaccept correct formula or equationsmnot calcium oxide reacts with siliconm				max [4]	
	(b)	(i)	resis	sensible suggestion – harder/stronger/can be t stant to corrosion steel does not rust	tailored for a spe	ecific use/more [1]	
		(ii)		steel – cars or any vehicle/bicycles/white goods/s lings/ships/pipes/machinery etc.	screws or nails/roo	of/bridges/tools/ [1]	
				nless steel – chemical plants/cooking utensils/jew nen sinks/pipes/etc.	ellery/cutlery/surg	cal equipment/ [1]	
	(c)	(i)	ener not	ng attractive forces / strong bonds / bonds hard f gy to break bonds between ions, not between positive and negative ic between electrons		s a lot of [1]	
			betw	veen positive ions and (negative) electrons / opposi	te charges attract	[1]	
		(ii)	acce	ause the <u>layers, lattice or rows</u> of <u>ions/cations</u> e pt sheets of ions atoms / molecules / protons / nuclei		[1]	
			can	move / slip / slide past each other		[1]	
4	(a)	(i)		$S + 3O_2 \rightarrow 2ZnO + 2SO_2$ palanced only [1]		[2]	
		(ii)		reagents from named metal(s) more reactive than a hydrogen	zinc/carbon monox	tide [2]	
		(iii)	-	have different boiling points nium will distil first then zinc leaving lead/lead distill	ed last	[1] [1]	

Page 4		ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – May/June 2011	0620	31	
	(b) for a high yield need low temperature then rate would be too slow or uneconomic a discussion of optimum temperature could score mark 1 and 2				[1] [1]	
		does r	nce of catalyst would increase rate (at same temperatu not alter the yield (at that temperature) omic rate at lower temperature, therefore higher yield	ure)	[1] [1]	
		-	pressure which would increase yield / rate igh enough / high pressure expensive		[1] [1] max [4]	
		-	t reverse arguments ncrease yield = position of equilibrium to right			
5	(a)	(i) 21	i + 2HI \rightarrow 2LiI + H ₂		[1]	
		(ii) zi	nc carbonate + hydriodic acid \rightarrow zinc iodide + carbor	dioxide + water	[1]	
	((iii) M	$gO + 2HI \rightarrow MgI_2 + H_2O$		[1]	
	(b)		on 1 is redox / Li/2HI reaction reason either oxidation number/state / electron transfe	r	[1] [1]	
	(c)	with h	/driodic acid – iodine formed / goes <u>dark brown</u> / grey/	black solid	[1]	
		ոօէ թւ	rple vapour not purple/black solution			
	with hydrobromic acid – bromine formed / goes orange / yellow / brown / redo / brown vapour				dish brown / red [1]	
	note can accept brown for iodine provided bromine is different orange/brown etc.					
	(d)		e reaction is exothermic / reaction produces heat/ener the sodium hydroxide used up/neutralised / reaction		[1] [1]	
		• •	lding colder acid / no more heat produced not given in (d)(i) any comments such as "reaction has	s stopped" can ga	[1] in mark	
	(n fo	33 / 1.3 / 1.3333 (mol/dm ³) scores both marks of 1.34 r a correct method – $M_1 V_1$ / moles of NaOH = 0.02 th an incorrect answer only [1]		[2]	

	Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
6	(a)	 (i) cracking / heat with catalyst to make butane butene reacts with steam/water / hydrated accept heat and catalyst for cracking but if specified: 450 to 800° aluminosilicates / silica / aluminium oxide/alumina / china / broken pot chromium oxide 				
		(ii) glucose / sugar changed to alcohol / ethanol				
		accept an unbalanced equation (catalysed by) enzymes / yeast				[1]
	(b)	 butanoic acid CH₃-CH₂-CH₂-COOH hydrogen atoms omitted from ends of bonds, penalise once 				
	(c)	(i)	este	r		[1]
		(ii)	C₀H ignc	₁₂ O₂ pre CH₃COOC₄H₃		[1]
		(iii)	corr	ect structural formula of butyl ethanoate showing all	bonds	[2]
7	(a)			is magnesium ost reactive or fastest reaction		[1] [1]
		metal B is aluminium cond faster reaction after removal of oxide layer / it would give more hydroge more reactive than zinc				[1] gen / aluminium [1]
		metal C is zinc zinc least reactive NOTE MAX [5]				[1] [1]
		If you encounter different reasoning which is correct, please award the appropriate ma				oriate marks.
	(b)	for	magr	nesium and zinc same <u>volume</u> of hydrogen		[1]
				both have valency of 2 / 1 mole of metal gives 1 m ith 2 moles of acid	ole of hydrogen /	1 mole of metal [1]
		bigger volume for aluminium because its valency is 3 / 1 mole of metal gives hydrogen / 1 mole of metal reacts with 3 moles of acid			es 1.5 moles of [1]	
		If you encounter different reasoning which is correct, please award the appropriate				oriate marks.
		aco	ent h	palanced equations		

accept balanced equations **accept** ionic charges as alternative to valency

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
8	(a)	accept n accept n accept n	 polymer only product / only one product nonomer has C=C nonomer and polymer have same empirical formula to loss of material in polymerisation one monomer 		[1]
		condens	ation – polymer and water / small molecule formed		[1]
		condenie			[.]
	(b)	-CH ₂ – C			
	(0)	_	nit correct		[1]
		COND c	ontinuation		[1]
	(c)	CH ₂ =CHOOCCH ₃			[1]
	(d)	-OC(CH ₂	2) ₄ CONH(CH ₂) ₆ NH-		
			mide correct linkage		[1]
		correct re	epeat units tion		[1] [1]
		not NH ₂ or COOH endings			[.]
					[Total: 80]