

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	32
1	(i	i) I	Rb /	Sr		[1]
	(ii	i) 1	I			[1]
	(iii	i) I	Fe			[1]
	(iv	/) I	Ρ			[1]
	(v	/) \$	Si			[1]
2	(a) (i	i) 1	no re	eaction		[1]
		f	for re	← $Sn^{2+} \rightarrow Fe^{2+}$ + $Sn / 2Fe + 3Sn^{2+} \rightarrow 2Fe^{3+} + 3Sn$ ealising that there would be a reaction shown by an attemp ation e.g. writing Fe ₂ Sn etc. allow [1]	t to write an	[2]
		I	no re	eaction		[1]
	(ii		All th	xide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen nree for two pt correct formulae	tetroxide), oxygen	[2]
		á	any t	two correct products		[1]
	(b) (i	i) t	tin			[1]
	(ii	,		$^{-} \rightarrow O_2 + 2H_2O + 4e^{-}$ palanced allow [1]		[2]
	(iii	i) :	sulfu	ric acid		[1]
	• •			ore reactive than iron/steel s reactive than iron/steel		[1] [1]
				rodes/reacts/loses electrons/is oxidised/is anodic/provid sitive ions (in preference to iron or steel) ORA	des sacrificial pro	otection/
	allow iron is cathodic for this mark.			[1]		
	Iron/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive ions (ir preference to tin). ORA					ions (in
				is cathodic for this mark		[1]

	Page 3	Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – May/June 2011	0620	32	
3		ncentration of thiosulfate is proportional to volume of thiosul al volume is same in all experiments) / <u>concentration</u> of acid			
	for	comments based on amount / to make experiments fair / co	mparable allow	[1]	
	(ii) 240	0 s		[1]	
	be	creases/reaction slower cause concentration of thiosulfate decreases quency/chances/rate of collisions decreases		[1] [1] [1]	
		e mark can be scored for less/smaller amount/smaller vo lisions	lume of thiosulf	ate / less	
	(b) rate inc	reases with temperature (or at 42 °C) ORA		[1]	
	•	s/molecules/ions move faster or gain energy / ORA accept reactants or atoms)		[1]	
	more co	ollisions / ORA		[1]	
	(last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely/more c rate/more effective/more successful/more with activation energy / ORA				
4	4 One redox equation accept $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$ $C + O_2 \rightarrow CO_2$ $CO_2 + C \rightarrow 2CO$			[1]	
	one acid/base equation CaO + SiO ₂ \rightarrow CaSiO ₃ or CaCO ₃ + SiO ₂ \rightarrow CaSiO ₃ + CO ₂				
	three more equations or comments carbon <u>burns</u> to form carbon dioxide this reaction is <u>exothermic</u> or <u>produces heat</u> carbon dioxide is <u>reduced</u> to carbon monoxide carbon monoxide <u>reduces</u> hematite to iron carbon <u>reduces</u> hematite to iron limestone removes silica <u>which is an impurity</u> to form slag <u>which is a waste product</u>				

limestone decomposes or symbol/word equation

Page 4		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2011	0620	32
(a)	Zn + H ₂	$SO_4 \rightarrow ZnSO_4 + H_2 / Zn + 2H^+ \rightarrow Zn^{2+} + H_2$		[2]
		e for correct reactants [1] correct products [1] quation is given don't penalise SO ₄ ^{2–} spectator ions on bot	h sides	
(b)	(exotherr	mic because) a cell produces (electrical) energy/electricity		[1]
	the next	two marks score for		
		are lost AND gained / oxidation no. or state/valency both		decreases
	/ two cor	rect half equations i.e. $Zn \rightarrow Zn^{2+} + 2e^{-}$ and $2H^{+} + 2e^{-}$	\rightarrow H ₂	[2]
(c)	zinc			[1]
		s the more reactive metal / it supplies electrons / it forms ic	ons more readily	
(d)	•	rinc with magnesium ron with copper		
		e) concentrated <u>sulfuric</u> acid se a <u>more</u> concentrated acid / a <u>more</u> concentrated solutio	n	

any **two**

[2]

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
6	(a) (i)	equa	at which methanol formed by forward reaction als rate it is reacting in back reaction of forward reaction equals rate of back reaction allow [1]		[1] [1]
	(ii)	high Expl	lower/decreased temperature /higher/increased pressure lanations not needed but if they are given they must be cor ORE values of temperature and pressure	rect	[1] [1]
	(iii)	-	pressure can be used / lower pressure due to expense or not use a low temperature as rate would be too slow the rat	•	[1] economic [1]
	(b) (i)	este	r		[1]
	(ii)	soap	o/sodium stearate or any acceptable salt/glycerol		[1]
	(iii)	burn	ing both fuels forms carbon		[1]
		-	ving plants to make biodiesel removes carbon dioxide a atmosphere		[1]
	(c) (i)	corre	ect SF of an octane		[1]
	(ii)	resu resu not colo	bromine (water)/bromine in an organic solvent It octane remains brown/orange/yellow/red It octane goes colourless/decolourises clear/discolours ur of reagent must be shown somewhere for [3] otherwise r ept equivalent test using KMnO ₄ in acid or alkali	max [2]	[1] [1] [1]

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	32
7			1nbp around phosphorus 3nbp around each chlorine		[1] [1]
	(b) (i)	PC <i>l</i> a	$_3$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃		[1]
	(ii)	mea	solutions same concentration sure pH/pH paper/Universal indicator rochloric acid lower pH		[1] [1] [1]
			urs of Universal indicator can be given as red <orange<yell re precise pH values as long as HCl is lower than H₃PO₃</orange<yell 	W	
	OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity magnesium			tivity series but	[1] not above
		calci	ium carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
		mea	acid solutions same concentration sure electrical conductivity rochloric acid better conductor/bulb brighter		[1] [1] [1]
		add	acid solutions same concentration sodium thiosulphate ochloric acid forms precipitate faster/less time		[1] [1] [1]
	(iii)	titrat secc	um hydroxide/sodium carbonate ion cond on correct reagent ond mark scores for mention of titration /burette/pipette/indi- erimental detail not required	cator.	[1] [1]
		any	named soluble calcium salt e.g. calcium chloride/nitrate/hy	droxide	[1]
		prec	ipitation/filter/decant/centrifuge		[1]

Page 7		7	Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – May/June 2011	0620	32	
8	(a) (i)	(to avoid) carbon monoxide formation/so complete combustion occurs/avoid incomp combustion So that CO_2 is produced				
		CO d	oes not dissolve/react with alkali		[1]	
	(ii)	CO ₂ i	s acidic		[1]	
	(iii)	volun	ne of gaseous hydrocarbon 20 cm ³ ne of oxygen used = 90 cm ³ ne of carbon dioxide formed = 60 cm ³		[1] [1]	
		no ma	ark for 20 cm ³ of hydrocarbon.			
	(iv)	2C₃H	$_{6}(g)/2CxHy(g) + 9O_{2}(g) \rightarrow 6CO_{2}(g) + 6H_{2}O(I)$		[1]	
	C		$C_3H_6(g)$ + 9/2O ₂ (g) \rightarrow 3CO ₂ (g) + 3H ₂ O(I)			
		C_3H_6			[1]	
		C_3H_6	can be given in the equation for the second mark			
	(b) (i)	correct structural or displayed formula of another chlorobutane / dichlorobutane polychlorobutane				
	(ii)	light /	200 °C / lead tetraethyl		[1]	
	(iii)	cracking is the decomposition/breaking down of an alkane/hydrocarbon/petroleum heat/high temperature / Temperature between 450 °C to 800 °C		ım [1]		
		OR catalyst / named catalyst to give a simpler alkane and alkene		5	[1] [1]	
		word	equation or equation as example		[1]	
		to ma hydro any f e		hemicals/petroch	emicals / [1]	

© University of Cambridge International Examinations 2011