MARK SCHEME for the October/November 2011 question paper

MMM. Hiremepapers.com

for the guidance of teachers

0620 CHEMISTRY

0620/23

Paper 2 (Core Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2011	0620	23
1 (a) (i) C			[1]
(i	i) A			[1]
(ii	i) E			[1]
(iv	/) D			[1]
(י	/) C			[1]
(b) (nestone / chalk / marble j nore: lime / formulae		[1]
(i	i) 3'	^d box down ticked (heavier than air)		[1]
(ii	2	₂ O on right (HC <i>l</i>) econd mark dependent on correct formula for water		[1] [1]
				[Total: 9]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2011	0620	23	
2		 (a) copper → any common use e.g. electrical wiring / pipes jewellery ignore: for alloys / for brass / for wires (unqualified) 				
	ະ ສ ເ ເ	platinum → any common use e.g. inert electrode / jewellery allow: for catalyst (as long as not incorrect catalyst) aluminium → any common use e.g. food containers / car (bodies) / aircraft (bodies) / kitche utensils / pots and pans allow: for roofing / for <u>high voltage</u> electrical cables ignore: for wires / for knives				
	(b) (isonous / harms nervous system or brain nore: harmful (without qualification)		[1]	
	(i		otons $\rightarrow 82$ eutrons $\rightarrow 125$		[1] [1]	
	(c) (so ge al m bu ig flo fiz ig lit	ny three of: dium goes into a ball / ets smaller / disappears low: dissolves ignore: reacts oves (over surface) lobbles / effervescence / nore: hydrogen given off ats on the water (as it reacts) / zes / hissing / crackling nore: sound mus turns blue / nore: changes colour		[3]	
	(i		dium hydroxide drogen		[1] [1]	
	(ii	, lo ga	ectron n ins gative		[1] [1] [1] [1] [Total: 15]	

ŀ	Mark Scheme: Teachers' version	Syllabus	Paper
nperat ss / a e of m ow: pr	of: ture mount of manganese(IV) oxide / volume of mangan nanganese dioxide particles ressure	I	23 [2]
		peroxide (in A)	[1]
			[1]
			[1]
			[1]
			[Total: 7]
thane			[1]
ximity tion –	$\gamma \rightarrow$ close together / touching \rightarrow random/ sliding over each other / movement not e		[1] [1] [1]
			[1]
		ocarbons	[1]
with	similar / (particular) range of boiling points / molecu	les with similar mo	blecular [1]
			[1] [1]
struc	cture of ethane showing all atoms and all bonds		[1]
2 nd b	box down ticked (saturated hydrocarbon)		[1]
			[Total: 11]
	time allow thane arro igno re: re re re re re re re re	IGCSE – October/November 2011 / two of: spectrum ss / amount of manganese(IV) oxide / volume of manganese or imaganese dioxide particles ow: pressure ore: concentration the greater the concentration the greater the speed / ratignore: concentration increases speed / more oxygen the less hydrogen peroxide present (in B) / more hydrogen peroxide less concentrated (in B) time taken $\rightarrow 27$ (s) allow: hydrogen peroxide less concentrated (in B) time taken $\rightarrow 27$ (s) allow: 26 (s) volume $\rightarrow 37$ (cm ³) gressium \rightarrow copper \rightarrow manganese \rightarrow lead ore: oxide / oxidation numbers thane angement \rightarrow random / irregularly arranged / no fixed positivity volume \rightarrow random / irregularly arranged / no fixed positivity arrow at tube at bottom left ignore: direction of arrow group of (different) molecules / group of (different) hydro more shall range of molecular masses X \rightarrow naphtha	IGCSE - October/November 2011 0620 / two of: inperature ss / amount of manganese(IV) oxide / volume of manganese(IV) oxide over an anganese dioxide particles ww: pressure ore: concentration the greater the concentration the greater the speed / rate increases with or ignore: concentration increases speed / more oxygen the grater the concelless hydrogen peroxide present (in B) / more hydrogen peroxide (in A) allow: hydrogen peroxide less concentrated (in B) time taken → 27 (s) allow: 26 (s) volume → 37 (cm³) gnesium → copper → manganese → lead ore: oxide / oxidation numbers ore: oxide / oxidation numbers thane angement → random / irregularly arranged / no fixed position ximity → close together / touching tion → random / sliding over each other / movement not entirely free w: move slightly arrow at tube at bottom left ignore: direction of arrow group of (different) molecules / group of (different) hydrocarbons implication of different molecules y → naphtha Y → diesel (oil) structure of ethane showing all atoms and all bonds

Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – October/November 2011	0620	23
) atom	$n \rightarrow t$	\rightarrow two or more atoms the smallest part atom that has become		[1] [1] [1]
(b) (i) p	pH 1	3		[1]
(ii) 4	40			[1]
(iii) r	neut	ralisation		[1]
f	from final	ecreases / pH goes from higher to lower pH / suital pH 12 to pH 8 pH below 7 / stated value below 7 re: gets more acidic	ole reference to p	H values e.g. [1] [1]
solut hydro chlor (hydr elect elect hydro chlor smel elect	bles (tion g oger rine a roge trode trode oger ride (Il of c trolyt	f: (from the electrodes) goes yellow(ish) / solution goes green(ish) a at cathode at anode n <u>and</u> chlorine gases produced at wrong electrodes as are graphite / electrodes are carbon es conducts electricity / electrons move in electrode (ions) go to cathode (ions) go to the anode chlorine e conducts electricity hydroxide ions		[6]

[Total: 14]

	Pa	ige 6		Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2011	0620	23
6	(a)			ucing agent / in the blast furnace / for extracting iron t metals / in making lime	or zinc or other s	suitable metal / [1]
	(b)	(i)	both	rs can slide over each other i ideas of layers and sliding needed	directions ([1]
			stror	ng bonding in all directions / covalent bonding in all on ng bonding in macromolecules in giant structure n ideas of type of bonding and giant structure neede		[1]
		(ii)	for c	utting / drill bits / for drills		[1]
	(c)	(i)		noni <u>um</u> sulfate p re: water / hydrogen		[1]
		(ii)	nitro	gen		[1]
	(d)	one	pair	of electrons in each overlap area		[1]
	(e)		box tio box t	cked licked		[1] [1]
	(e)					

[Total: 9]

Page 7		,	Mark Scheme: Teachers' version IGCSE – October/November 2011	Syllabus 0620	Paper 23	
(a)	(i)	have CH ₂ have have allow	two of: e same general formula / have same pattern of form group e same functional group e similar chemical properties / prepared by similar m w: same chemical properties similar properties w gradual change in physical properties / show trend	ula / members difi ethods		
	(ii)	H – 1	Н Н С-С-О-Н Н Н			
		allo	w: OH in place of O – H			
(b)	(i)	both	hermic <u>and</u> temperature increases / goes from 18 to 1: exothermic and temperature increase needed for w: exothermic because heat is given off			
	(ii)		/ black / grey-black brown / purple			
(c)			zinc);			
	(let allo allo ign	alcoh ow: w ow: us ore: h	cond mark dependent on filtration for first mark nol) evaporate / evaporate (off the alcohol) arm gently (to remove some alcohol) se drying agent heat unqualified / crystallise esidue left to dry			
(d)	(i)	ZnI ₂ allov	w: 5ZnI ₂			
	(ii)		answer ringed (giant ionic) w: underlined or ticked			
(e)	zino	c nitra moniu	or each product ate um nitrate not: ammonia nitrate			
(f)	test litm	t gas i ius pa	ieous) sodium hydroxide (and warm) evolved with red litmus paper/ universal indicator pa aper/ universal indicator paper turns blue e 2 nd and 3 rd marks are dependent on the first mark l			
					[Total: /	

[Total: 15]