mun. Arenepabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2				Syllabus	Paper	
				IGCSE – October/November 2011	0620	31
1	(a)	(i)	lithiu	ım oxide / strontium oxide		[1]
		(ii)	sulfu	ır dioxide / nitrogen dioxide		[1]
		(iii)	alum	ninium oxide		[1]
		(iv)		on monoxide ept: correct formulae		[1]
	(b)	bur nitro rea higl	ogen ction	sil) fuel containing sulfur / volcanoes dioxide of nitrogen and oxygen peratures / in car engine		[1] [1] [1] [1]
	(c)	(i)		ntium oxide ept: aluminium oxide		[1]
		(ii)	con 6x a	correct formula d: charges on ions nd 2o around oxygen ore: electrons around Li		[1] [1]
2	(a)	(i)	deca	ste gases) from animals aying vegetation / anaerobic decay ept: decomposition of organic material / natural gas		[1] [1]
		(ii)	carb wate	on dioxide er		[1] [1]
	(b)	b) photosynthesis removes carbon dioxide from the atmosphere both respiration and combustion produce carbon dioxide any two of the following: plants photosynthesis changes carbon dioxide into carbohydrates (burning) of fossil fuels / named fuel / petrol / alkanes respiration by living organisms to obtain energy from carbon–containing compounds comment that the balance between these processes determines the percentage dioxide				

		IGCSL - October/November 2011 0020 31				
3 (a	a) (i)	bauxite [1				
	(ii)	lowers melting point [1] better conductor / reduces amount of energy needed / reduces cost / more economic / makes process viable / conserves energy [1]				
	(iii)	aluminium more reactive than copper / aluminium higher in reactivity series [1 hydrogen not aluminium formed at cathode [1				
(t	(b) $Al^{3^+} + 3e \rightarrow Al$ $2O^{2^-} \rightarrow O_2 + 4e$ note: not balanced = 1 oxygen reacts with carbon (anode) to form carbon dioxide / C + $O_2 \rightarrow CO_2$ note: if mark(s) for an electrode reaction are not awarded then allow aluminium ions a electrons / are reduced oxide ion loses electrons / is oxidised max 4					
(0	c) (i)	protective oxide layer [1				
	(ii)	aluminium low density / light aluminium is a good conductor strength / prevent sagging / allows greater separation of pylons / core made o steel because it is strong [1]				
4 (a	cor	e of forward reaction equals rate of back reaction [1 centrations do not change / macroscopic properties remain constant (with time) [1 cept: amounts				
(k	o) (i)	increase [1 reaction 2 [1 Vr > Vp				
	(ii)	same [1 reaction 1 [1 Vr = Vp [1				
	(iii)	decrease [1 reaction 3 [1 Vp > Vr [1 accept: moles of gas / molecules of gas as an alternative to volume				

Mark Scheme: Teachers' version

IGCSE - October/November 2011

Syllabus

0620

Paper

31

Page 4		Mark Scheme: Teachers' v			
		IGCSE – October/Novemb	er 2011 0620	31	
5	(a) (i)	rate of reaction decreases / gradient dec because <u>concentration</u> of bromine decre reaction stops because all bromine is us	[1] [1] [1]		
	(ii)	because bigger surface area / more particles of iron exposed or:			
		final mass the same because mass of bromine is the same so the same mass of iron is used			
	(iii) increase / decrease / change rate of stirring / not stirred measure new rate / compare results			[1] [1]	
	(b) (i)	(b) (i) Fe to Fe ²⁺ because oxidation is electron loss / increase in oxidation number			
	(ii)	Fe		[1]	
	Fe ²	(c) add sodium hydroxide solution / ammonia(aq) Fe ²⁺ green precipitate Fe ³⁺ brown precipitate			
6	(a) (i)	correct structural formula of ethanoic acallow: –OH not: –COOH	d	[1]	
	(ii)	correct structural formula of ethanol allow: -OH		[1]	
	(b) (i)	ethyl ethanoate		[1]	
	(ii)	-OC ₆ H ₄ COOCH ₂ CH ₂ O- correct ester linkage correct repeat units continuation accept: boxes if it is clear what the box	represents	[1] [1] [1]	
	(iii)	any two from: long time to decay landfill sites visual pollution / litter danger to animals poisonous gases when burnt accept: any correct suggestion		[2]	

Page 5		5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	31
(otein -	nthetic – only two monomers otein – many different monomers		
		/lon ha	otein has 1 C=O and 1N–H lon has 2 C=O / 2N–H		
	Sy	nthetic – one monomer is a dicarboxylic acid and the other is a diamine otein all monomers are amino acids			[1] [1]
7 ((a) (i)		Group 1 metal ept: LiOH		[1]
	(ii)		$OH)_2 \rightarrow CuO + H_2O$ e: products only = 1		[2]
	(iii)) read	ctivity of metals / metals have different reactivities		[1]
((b) (i)		oxide, nitrogen dioxide, oxygen e: two correct = 1		[2]
	(ii)		$IO_3 \rightarrow 2KNO_2 + O_2$ e: unbalanced = 1, correct word equation = 1		[2]
((c) calculation: M_r for NaHCO ₃ = 84 g; M_r for Na ₂ O = 62 g; M_r for NaOH = 40 g M_r for Na ₂ CO ₃ = 106 g				
	(i)	num	ober of moles of NaHCO ₃ used = $3.36/84 = 0.04$		[1]
	(ii)		sidue is Na_2O , number of moles of $Na_2O = 2.12/62$ 034 / 0.03		
			sidue is NaOH, number of moles of NaOH = 2.12/40 053 / 0.05)	
			side is Na_2CO_3 , number of moles of $Na_2CO_3 = 2.12/3$ e: two correct = 1	106 =0.02 all three co	rrect [2]
	(iii)		ation 3 e ratio 2:1 agrees with equation		[1] [1]