MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	33
1	(a) (i)	Cs /	Fr		[1]
	(ii)	Br			[1]
	(iii)	U / F	Pu / Th		[1]
	(iv)	I or a	At		[1]
	(v)	As			[1]
	(vi)	He /	Ne / Ar / Kr / Xe		[1]
	(b) (i)	GeO	0 ₂ / GeO		[1]
	(ii)	ТеВ	r ₂ / TeBr ₄		[1]
	(c) (i)	Sr²⁺			[1]
	(ii)	F⁻			[1]
2	(a) (i)	poly	ecule / unit / simple compound / building blo mer / big molecule / long chain / macromolecule		[1]
		mon mole	ation of a polymer / big molecule / long chain / m omers and elimination / removal / formatior ecule / H ₂ O / HC <i>1</i> e: two points needed for 1 mark in both parts		
	(ii)	three	inkage e correct monomer units inuation		[1] [1] [1]
	(b) (i)		lyst and from living organism e pt: biological catalyst / protein catalyst		[1]
	(ii)	enzy	/me denatured / destroyed		[1]
	(iii)	locat	matography ting agent / description of locating agent sure R _f / compare with standards		[1] [1] [1]

	Page 3			Syllabus	Paper	
			IGCSE – October/November 2011	0620	33	
3	(a)) sodium hydroxide solution warm (only) ammonium phosphate gives off ammonia / gas (which will turn red litmus pap				[1] [1]
		blue) or:				[1]
		sodium hydroxide solution dissolve fertiliser in water Ca ²⁺ gives (white) ppt or:				[1] [1] [1]
		flame test Ca ²⁺ brick red / orange / orange-red NH ₄ ⁺ no colour				[1] [1] [1]
	(b)	pre: tem N ₂	catalyst ssure 150–300 atmospheres perature 370–470 °C + 3H ₂ ≑ 2NH ₃ e: units required for temperature and pressure			[1] [1] [1] [1]
	(c)	pota	assium / K			[1]
	(d)	(i)	needs to be soluble / in solution (to be absorbed by pl	ants)		[1]
		(ii)	base proton acceptor			[1] [1]
	(e)	plant growth depends on soil acidity or pH / plants have optimum pH (for growth)			wth)	[1]
		add Ca(OH) ₂ / CaO / CaCO ₃ / lime / slaked lime / quicklime / limestone				[1]
4	(a)	(i)	alloy / mixture iron and carbon / another metal or element etc.			[1] [1]
		(ii)	electron loss			[1]
	(b)		ctrons move from / lost from Mg teel / iron			[1] [1]
	(c)) (i) $2H^+ + 2e \rightarrow H_2$ not balanced = 1				[2]

Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
			IGCSE – October/November 2011	0620	33	
	(ii)	sacr	ificial protection – is a <u>cell</u>		[1]	
	()		odic protection – is electrolysis NOT electrical cell		[1]	
		or:	ficial protection cleatrons from more reactive mat	-1	[4]	
			ificial protection – electrons from more reactive meta odic protection – electrons from battery etc.		[1] [1]	
		or:			[.]	
			ificial protection – does not need or use power / ba	ttery / electricity		
		cell cath	odic protection – does		[1] [1]	
		or:			[.]	
			ificial protection uses up / needs a sacrificial / more	reactive metal	[1]	
		cath	odic protection doesn't		[1]	
5 (a)	liab	+/11\/	(/ sup / suplight / solar operav		[4]	
5 (a)	-		/ / sun / sunlight / solar energy nitiates / speeds up		[1] [1]	
(b)) (i)	0.03	% – 1(%) carbon dioxide		[1]	
			ept: less than 1(%)			
		20%	₀ – 21(%) oxygen		[1]	
	(ii)		ove carbon dioxide from atmosphere		[1]	
		•	uce oxygen		[1]	
		-	two from: osynthesis			
		chlo	rophyll / chloroplast			
		-	/ sun / sunlight / UV / photochemical		[0]	
		101111	ed carbohydrates / glucose / sugar(s)		[2]	
(c)	rea	ction	is photochemical / needs light		[1]	
(-)	(ligł	nt) ca	uses formation of silver / silver ions reduced		[1]	
	•		ation of silver) goes black		[1]	
		igin s	till silver(I) bromide / stays white / no reaction		[1]	
6 (a)	anv	thre	e from:			
	bar	ium n	nore reactive / forms ions more readily			
			eacts with (cold) water, nickel does not nore vigorous with acids			
			mpounds coloured, barium compounds white			
	nicł	kel ha	s more than one oxidation state, barium has one			
			ickel compounds catalysts, barium / barium compou	unds not catalysts		
	nicr		ms complex ions, barium does not		[3]	
(b)) <i>(</i> i)	forw	ard reaction favoured by low temperatures / rev	erse reaction fay	voured by	
()	, (-)		temperatures / heat		[1]	
		exot	hermic		[1]	
	(ii)	prod	ucts / RHS		[1]	
	,		fewer moles / molecules / smaller volume / ORA		[1]	
	(iii)	do n	ot react or left behind / left at 60 °C		[4]	
	(111)	uu II			[1]	

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	33
	(iv)	cath anoc	trolysis ode (pure) nickel de impure nickel trolyte is a soluble nickel salt		[1] [1] [1] [1]
7	i.e. C ₉ ⊦	126/1 1 ₁₈	nethod shown 4 (= 9) or 14x = 126 or x = 9 or (12 × 9) + 18 = 126 rrect formula only = 1)	[1] [1]
	(b) (i)	C—0	ydrogen atoms 1bp C bond atoms 1bp 2 bp		[1] [1] [1]
	(ii)		ect repeat unit inuation		[1] [1]
	(iii)	H-H bond 2C-H –130 or:	As broken +436 (kJ/mol) C=C +610 = +1046 (kJ/mol) As formed H -415×2 kJ/mol C-C -346 = -1176 (kJ/mol) b kJ/mol / more energy released than absorbed		[1] [1] [1]
		3882 bond 4012 –130 allo	Is broken 2 (kJ/mol) Is formed 2 (kJ/mol) 0 kJ/mol / more energy released than absorbed w: ecf for final mark as long as the answer is not po e: units not necessary	sitive	[1] [1] [1]
	(c) (i)	buta	n-1-ol or butan-2-ol or butanol		[1]
	(ii)	C ₄ H ₈	-CH ₂ -CH(Br)-CH ₂ Br ₃ Br ₂ = 1 e: any other dibromobutane = 0		[2]
	(iii)	HI			[1]