

CANDIDATE

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

mmn. Xiremedabers.com

*	
ū	
5	
2	
4	
_	
0	
∞	
W	
5	
∞	

NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2		Oct	ober/November 2011
			1 hour 15 minutes
Candidates an	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

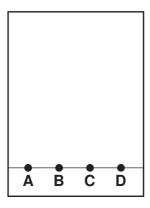
A copy of the Periodic Table is printed on page 20.

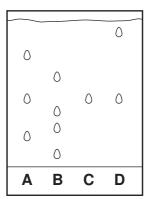
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 18 printed pages and 2 blank pages.

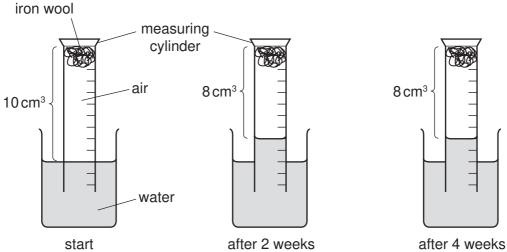

			2
1	Chr	oma	tography can be used to test for the purity of substances.
	(a)	(i)	Describe one area in everyday life where purity of substances is important.
			[1]
		(ii)	Mineral water contains dissolved salts such as magnesium chloride. Which one of the following statements about mineral water is correct? Tick one box.
			Mineral water boils at slightly above 100 °C.
			Mineral water is pure water.
			Mineral water boils at exactly 100 °C.
			Another name for mineral water is fizzy water. [1]
	(b)	The	diagram shows the apparatus used to separate different dyes in food colourings.
			spot of food colouring placed here

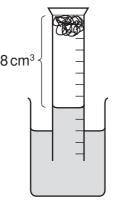

Label the diagram in the boxes provided using the words below.

chromatography paper origin line solvent solvent front [2]

(c) The diagram below shows the chromatography of four different food colourings, A, B, C and D.

For Examiner's Use





at the start of the experiment

the final chromatogram

A student set up an experiment to demonstrate rusting as shown below. 2 He made observations at the start of the experiment, after 2 weeks and after 4 weeks.

(a)	What conditions are needed for the iron wool to rust?
	[2
(b)	Two weeks after the start of the experiment, the volume of air in the measuring cylinde had decreased. After a further two weeks there was no change in the volume of air. Explain the results of this experiment.
	[3
(c)	What change would you observe in the iron wool as it rusted?
	appearance at start
	appearance after 2 weeks[2
(d)	Rust contains iron(III) ions. Describe a test for iron(III) ions.
	test

For
Examiner's
Use

(e) Clean iron reacts with dilute hydrochloric acid.

Fe + 2HC
$$l \rightarrow$$
 FeC l_2 + H $_2$

Write a word equation for this reaction.

.....[2]

[Total: 11]

3	The	diagram	shows	some	of the	elements	in	Period	3 ი	f the	Periodic	Table.
•	1110	alagram	3110443	501110	OI LIIC	CICITICITIO		1 01100	\circ	1 1110	i ciicaic	Tubic.

Na	Mg		Si	Р	S	Cl	Ar
----	----	--	----	---	---	----	----

(a)	Fro	m the diagram, choose
	(i)	one element which forms a basic oxide.
		[1
	(ii)	two elements which form acidic oxides.
		and [2
(b)	Des	scribe how metallic character of the elements changes across a period.
		[1
(c)	Wh	at determines the order of the elements in the Periodic Table?
		[1
(d)	The	e missing element in the table is aluminium.
	(i)	Describe the structure of an aluminium atom. In your description write about
		 the number and types of particles in the nucleus the electrons.

price

in £/kg

(ii) Use the information in the table below to explain why aluminium is used in preference to iron or titanium for overhead electricity cables. Give **two** reasons.

melting point

/°C

strength

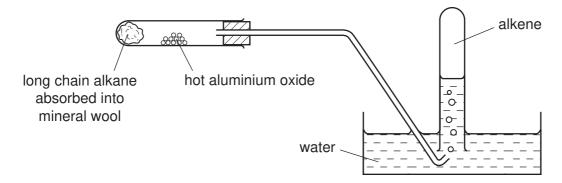
density

in g/cm³

electrical

conductivity

metal


aluminium	very good	2.7	660	fairly strong	24		
iron	good	7.9	1535	strong	3		
titanium	good	4.5	1660	very strong	104		
(e) Chlorine is a green gas. When chlorine is bubbled through an aqueous solution of potassium bromide, the solution turns orange. Complete the symbol equation for this reaction.							
Compie	•	•		1/01		[0]	
	Gl_2	+KBr →	+	KG <i>l</i>		[2]	
Which o	(f) Argon is a noble gas which is denser than air. Which one of these statements about argon is correct? Tick one box.						
Arg	Argon reacts rapidly with chlorine.						
Arg	Argon is used for filling balloons.						
Arg	Argon has a complete outer shell of valency electrons.						
Arg	on has only two	valency electr	ons in its outer	shell.			
						[1]	
					[Total	: 14]	

© UCLES 2011 0620/21/O/N/11 **[Turn over**

4	Ethane is a	saturated	hydrocarbon.	Ethene is an	unsaturated l	nydrocarbon.
---	-------------	-----------	--------------	--------------	---------------	--------------

(a)	Describe how you can distinguish between ethane and ethene using aqueous bromine.
	23

(b) The diagram shows the apparatus used to crack long chain alkanes into alkenes and shorter chained alkanes in the laboratory.

r 🔿	1
 [4	J

(ii) What information in the diagram shows that alkenes are insoluble in water?

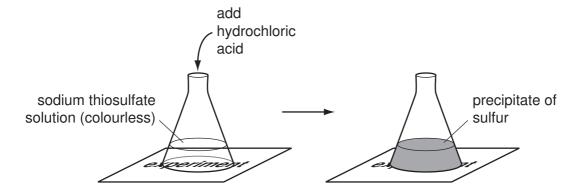
F 4 7	
171	
111	

(iii) Propene is an alkene.

The formula of propene is C_3H_6 . Calculate the relative molecular mass of propene.

[1]

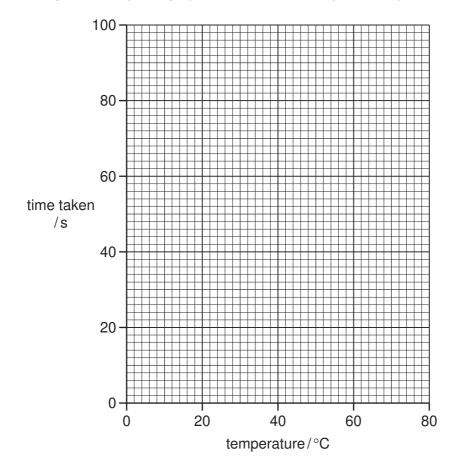
(iv) Complete the equation for the cracking of the alkane tetradecane, $C_{14}H_{30}$.


$$C_{14}H_{30} \rightarrow \dots + C_{10}H_{22}$$
 [1]

(c) Poly(ethene) is formed from ethene monomers. Select two words from the list that describe this reaction.

	dehydration	condensation	addition
	polymerisation	neutralisation	fermentation
[2]		and	
[Total: 9]			

5 A pupil studied the effect of temperature on the speed of reaction of aqueous sodium thiosulfate with dilute hydrochloric acid.


When he added hydrochloric acid to a solution of sodium thiosulfate, a precipitate of sulfur gradually formed. He recorded the time taken for some writing placed under the flask to disappear from view.

He repeated the experiment at different temperatures. The table shows his results.

temperature /°C	time taken for the writing to disappear from view/s
15	100
30	56
45	34
60	20
75	12

(a) (i) On the grid below, plot a graph of the time taken against temperature.

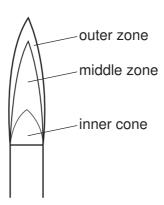
[3]

(ii)	At which	temperature	was the	reaction the	fastest?
------	----------	-------------	---------	--------------	----------

.....[1]

(iii) Describe how the temperature affects the speed of reaction.

(b) Suggest how the speed of this reaction at 30 °C will change when the concentration of hydrochloric acid is increased.


[1]

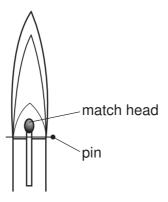
(c)	The equation for the reaction is	

	$Na_2S_2O_3(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$	
(i)	State the name of the salt formed in this reaction.	
	[1]
(ii)	To which group in the Periodic Table does sulfur belong?	
	[1]
(iii)	Sulfur dioxide is formed when coal is burnt in power stations. State one harmful effect of sulfur dioxide on the environment.	
	[1]
(iv)	Sulfur dioxide can be removed in power stations by flue gas desulfurisation. Which one of these compounds is used to remove the sulfur dioxide in this process Tick one box.	?
	calcium chloride	
	calcium oxide	
	nitrogen dioxide	
	potassium nitrate	_
	[1]
(v)	Magnesium burns in sulfur dioxide.	
	$2Mg + SO_2 \rightarrow 2MgO + S$	
	Refer to this equation to explain why this is a redox reaction.	
	[2	?]
	[Total: 12	2]

6 The diagram shows the flame from a Bunsen burner when its air hole is open.

(a) In the outer zone of the flame, methane undergoes complete combustion. Complete the equation for the complete combustion of methane.

$$CH_4 + \dots \rightarrow CO_2 + 2H_2O$$
 [2]

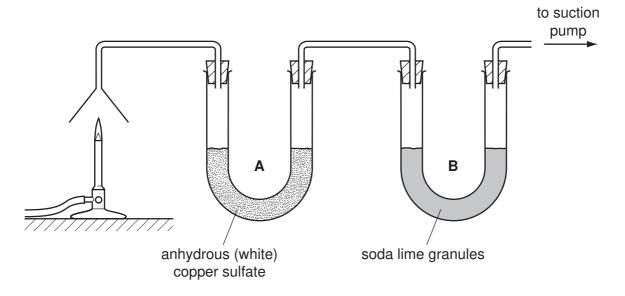

(b) In the middle zone of the flame, less air is present and incomplete combustion occurs. State the name of the poisonous gas formed during the incomplete combustion of methane.

______[1]

(c) The inner cone of the flame contains only unburnt methane.

A student put a match in the Bunsen burner as shown in the diagram below.

He then lit the Bunsen burner.

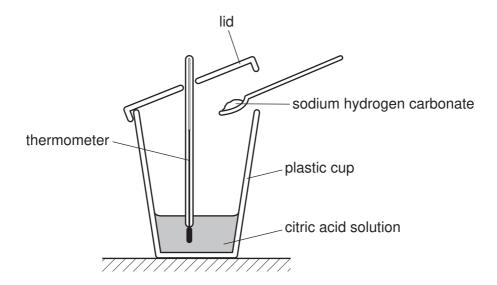


Suggest why the match did not catch fire.

......[1]

For Examiner's Use

(d) The products of the complete combustion of methane were drawn through the apparatus shown below.


tube A, blue.
[1]
[1]
e experiment
[1]
[1]
sphere.
[1]
[Total: 9]

For Examiner's Use

[1]

[1]

7 A student studied the reaction of citric acid with sodium hydrogen carbonate. She put a solution of citric acid in a plastic cup and measured its temperature. She then added sodium hydrogen carbonate powder and measured the temperature again.

(a) The temperature of the reaction mixture decreased. Which one of these statements about this reaction is correct? Tick one box.

The reaction released heat energy.

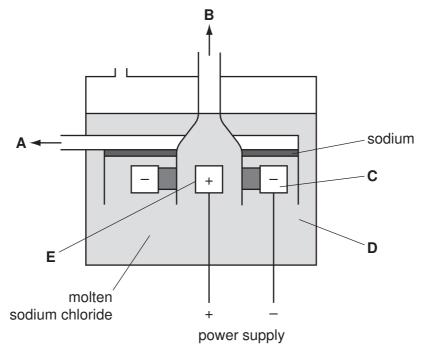
The reaction is exothermic.

The reaction is endothermic.

The products have less energy than the reactants.

(b) The structure of citric acid is shown below.

- (i) On this structure, put a ring around the alcohol functional group.
- (ii) Write the simplest formula for citric acid.


[1]

(c) Sal	ts of citric acid can be prepared from lemon juice.
(i)	The lemon juice is first boiled to remove various substances including enzymes. What do you understand by the term <i>enzyme</i> ?
	[2]
(ii)	The lemon juice is then neutralised with calcium carbonate and solid calcium citrate
	is formed. Suggest how the calcium citrate can be separated from the mixture.
	[1]
(iii)	Carbon dioxide gas is released when citric acid solution reacts with calcium carbonate.
	Describe a test for carbon dioxide.
	test
	result[2]
	e concentration of a citric acid solution can be found by carrying out a titration using apparatus shown below.
	sodium hydroxide solution
	citric acid solution
Des	scribe how to carry out this titration.
	[3]
	[Total: 11]

0620/21/O/N/11

8 The diagram shows an electrolysis cell for extracting sodium from molten sodium chloride.

For Examiner's Use

(a)	(i)	Which lette	er on the diagr	am represents	3		
		the electrol	lyte?				
		the cathode	e?				[2]
	(ii)		of the followir around the co		is most likely	to be used as t	he anode?
			graphite	sodium	sulfur	zinc	[1]
(b)		at information		diagram sugge	ests that sod	ium is less den	se than molten
							[1]
(c)	Pre	dict the prod	duct formed at	t the anode du	ring this elec	trolysis.	
							[1]
(d)		me the gase oride is elect		e anode and c	athode when	an aqueous so	lution of sodium
	pro	duct at the a	anode				
	pro	duct at the c	athode				[2]
							[Total: 7]

BLANK PAGE

BLANK PAGE

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET The Periodic Table of the Elements

								Gr	oup								
I	II											III	IV	V	VI	VII	0
							1 H Hydrogen 1										4 He Helium 2
7 Li Lithium	9 Be Beryllium							ı				11 B Boron 5	12 C Carbon	14 N Nitrogen	16 O Oxygen 8	19 F Fluorine	20 Ne Neon 10
23 Na Sodium	Mg Magnesium											27 A 1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine 17	40 Ar Argon
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium 32	75 As Arsenic	79 Se Selenium 34	Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	Cadmium 48	115 In Indium	119 Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury	204 T <i>I</i> Thallium	207 Pb Lead	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 AC Actinium 89 †															
	anthanoi Actinoid	series		140 Ce Cerium 58	Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	X	= relative ator (= atomic sym = proton (aton	bol	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).