MMM. Firenepalers. com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2			?	Mark Scheme	Syllabus	Paper
				IGCSE – October/November 2012	0620	32
1	(a)		Sb;			
		(ii)	Xe /	B;		
		(iii)	Sr/	Te / A / D;		
		(iv)	Sn a	and I / E and F;		
		(v)	Sr/	A;		[5]
	(b)	phy niol har				[2]
		any	two i	from:		
		con tha	npour n one	is less reactive; forms coloured compounds; forms on the nave catalytic properties; has more than one oxi- evalency electron; e response has to refer to or compare properties of	idation state; has r	more [2]
						[Total: 9]
2	(a)	liqu	iid;			[1]
	(b)	reve acc ign	ept: ore:	(s); e sign; X in equation any compounds just look for state symbols the same compound on both sides of equation		[1] [1]
	(c)			condensation; evaporation or vaporisation		[1]
	(d)			n BC) solid melts / liquid boils (in region DE); fixed / sharp / single / specific temperature;		[1] [1]
						[Total: 6]
3	(a)	(i)	corre	ect structure of an isomer e.g. 2-chloropropane;		[1]
		(ii)		rine; / heat / lead tetraethyl;		[1] [1]

Page 3	Mark Scheme	Paper						
	IGCSE – October/November 2012	0620	32					
C •	ould produce 2-chloropropane; ould produce HC <i>l</i> ; or ould produce dichloropropanes = [2]		[1] [1]					
y n	 add silver nitrate / lead nitrate; yellow precipitate; note: do not insist on presence of dilute nitric acid 							
(ii) p	ropanol / propan-1-ol;		[1]					
d le p a	or A; eaction slower; ecreased collision rate; ess bromobutane present / concentration of bromobut earticles; eny two eccept: reverse arguments for B	ane less / less rea	cting [2]					
0	alogens $Cl > Br > I$ reactivity / reactivity decreases dorganic halides $I > Br > Cl$ / reactivity increases down apposite without explanation = [1]		[1] [1]					
le p le	iny three from: ess energy; earticles move slower; ess collisions / fewer particles have energy to react / flower rate;	ewer successful c	ollisions; [3] [Total: 15]					
(a) C +	$O_2 \rightarrow CO_2$		[1]					
th •	CO_2 already formed (from C burning or from $CaCO_3$); nen carbon reacts with carbon dioxide; or $C + CO_2 \rightarrow 2CO = [2]$ If equation not balanced = [1]		[1] [1]					
n	fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂ ot balanced = [1] ot: reduction by carbon		[2]					
reacts CaCC or Ca	nove / neutralise silica / silicon dioxide / silicon(IV) oxis with limestone to form slag / calcium silicate; $O_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$ $O_3 + SiO_2 \rightarrow CaSiO_3$ $O_3 \rightarrow CaO + CO_2$	de / sand;	[1] [1] [1]					

4

	Page 4			Mark Scheme Syllabus						S	Pap						
					<u> </u>	GCSE	<u> </u>	ctobe	er/Nov	vemb	er 201	2		0620		3:	2
	(d)	(i) g	alva	vani	sing /	galva	nisat	ion / s	sacrifi	cial p	rotectio	n;					[1]
					al pro				sacrifi n'	iced;							
		zi	nc	is o	oxidise	ed in	prefe	rence	to iro			4_ :					
		zi	nc	c mc	re rea	active	/ ele	ctrop	ositive	than	iron;	ce to iro	11,				
					es ele Is mo				adily 1	than	iron;						
		a	ny t	thr	ee												[3]
																[To	otal: 12]
_	(- \			c													
5	(a)	any tw bleach	ning	ng (v	vood p				, .								
									-		ct proce yes; ma	ess; aking wir	ne; in:	secticide	e;		
		fungio		_		· ·				J	•	J					[2]
	(b)	burn /	ho:	oat i	react	eulfi	ır.										[1]
	(6)	in air /				Sunc	и,										[1]
		or burn /	he	eat /	roast	zinc	sulfic	de or	ead s	ulfide	e ;						
		in air /	ox	xyg	∍n;												
	(c)	from p	ourr	rnle	/ pink	· not	t: red										[1]
	(-)	to cold															[1]
	, D	•		_				•	45/46								F.4.7
	(d)	numb numb	er c	of n	noles	of SC	0 ₂ for	med =	0.02	5							[1] [1]
		volum allow:			O ₂ =	0.02	5 x	24 = (0.6 dr	m³/litı	es or 6	00 cm ³					[1]
		for 1. If use	6 g	g of			'y										
		note:					ts for	last n	nark								

[Total: 9]

	Page 5	5	Mark Scheme IGCSE – October/November 2012	Syllabus 0620	Paper 32	
6	(a) (i)	corre	[1]			
	(ii)	from or fr	n battery / power supply / cell; n negative electrode of battery to external circuit; rom anode; n iodide ion losing electron or oxidation of anion;		[1] [1]	
	(iii)	ions	cannot move in solid / ions can move in liquid;		[1]	
	(b) cop	•	s to) sulfuric acid;		[1] [1]	
		droge nange	en; es to) potassium hydroxide;		[1] [1]	
	(c) (i)		+ 2e → H ₂ balanced = [1]		[2]	
	(ii)	40H	$H^- \rightarrow O_2 + 2H_2O + 4e$		[1]	
	(iii)	wate	er used up;		[1]	
	this	droger s reac	II; n reacts with oxygen; tion produces energy / is exothermic / produces flow chemical energy to electrical energy;	v of electrons /	[1] [1]	
					[Total: 15]	
7	(a) (i)	C _n H ₂	_{2n+1} OH		[1]	
	(ii)	for a	-17 = 99, 2n+1 = 99, n = 7 any evidence of working out ₁₅ OH		[1] [1]	
	(iii)	1 bp	s around C; o on each hydrogen; s and 2nbps on oxygen;		[1] [1] [1]	
	(b) (i)		eases yield / moves equilibrium to RHS / favours for pressure favours side with smaller number of (gas)		[1] [1]	
	(ii)	high com at 25	two from: er temperature / catalyst causes faster reaction; ment about compromise conditions to give best rate 50°C (lower temp) higher yield / forward reaction favous	oured;	াথ	

[3]

at 350°C (higher temp) lower yield / back reaction favoured;

Page 6	Mark Scheme	Syllabus	Paper	
	IGCSE – October/November 2012	0620	32	

(c) (i) methanoic acid; [1] correct SF showing all bonds; [1] accept: -OH

(ii) methyl methanoate; [1]

[Total: 14]