CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme	Syllabus	Paper				
		IGCSE – October/November 2012	0620	31				
1	(a) diffus	ion or fractional distillation;						
	(b) fractio	onal distillation;						
	(c) simple distillation;							
	(d) crysta	(d) crystallisation;						
	(e) filtrati	(e) filtration;						
	(f) chron	natography;						
				[Total: 6]				
2	(a) (i) b	ecome darker;		[1]				
	(ii) ir	ncrease;		[1]				
		lack / dark grey;		[1]				
		olid;		[1]				
		ame Z / same number of protons; ccept: atoms of the same element		[1]				
	d	lifferent number of neutrons / different nucleon numbe number;	r / different mass	[1]				
	(ii) 5	3 protons and 53 electrons;		[1]				
	7	8 neutrons;		[1]				
	(iii) x	enon;		[1]				
	(c) BrF ₃ / BrF ₅ /	′ F₃Br; ′ F₅Br;		[1] [1]				
				[Total: 11]				

Page 3		3	Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2012	0620	31
3	(a) (i)	par mo col mo aco no	v three from: ticles have more energy; ve faster; ide more frequently; re successful collisions; cept: atoms or molecules for particles :: electrons :: vibrate more		[3]
	(ii)	enz	ction faster with temperature increase; zymes denatured / destroyed; :: killed		[1] [1]
	(b) (i)		ger initial gradient; ne final volume of nitrogen;		[1] [1]
	(ii)) dec	crease / slows down;		[1]
	(iii)	cor or:	<u>icentration</u> of organic compound decreases; npound used up = [1] fewer particles; ision rate decreases;		[2]
	(c) (i)		bon monoxide-incomplete combustion; bon - containing fuel / fossil fuel / petrol;		[1] [1]
		at h	des of nitrogen - oxygen and nitrogen react; nigh temperature / in engine; :: in exhaust		[1] [1]
	(ii)	oxi	bon monoxide to carbon dioxide; des of nitrogen to nitrogen; rect balanced equation;		[1] [1] [1]
					[Total: 17]

	Pa	ge 4	ļ	Mark Scheme		Paper
				IGCSE – October/November 2012	0620	31
4	(a)	-		ralent; mer made from monomers;		[1]
	(b)	(i)	high hard brittle insol			[3]
		(ii)		on / diamond / silicon / boron; graphite		[1]
	(c)	(i)	sodi	um hydroxide / any named alkali / reactive metal;		[1]
		(ii)		ed acid; pnium oxide;		[1] [1]
						[Total: 8]
5	(a)	(i)	influe or: turns	of reaction; enced by light / only happens in light; s light into chemical energy = [2] e pt: light is catalyst = [1]		[1] [1]
		(ii)	they appr or: phot corre dioxi anyti effec or: chlor maki	ction of silver halides; are reduced to silver / $2AgCl \rightarrow 2Ag + Cl_2$; opriate importance given; ect comment about chemistry carbon dioxide to carl ide to oxygen; hing sensible e.g. its role in the food chain or decre ct or oxygen for respiration; rination; ing chloroalkanes; opriate importance given;	-	[1] [1] [1]
	(b)	(i)	-	sure would move position of equilibrium to right / in ease pressure favours side with less (gas) molecule	-	[1] [1]
		(ii)		ease temperature favours endothermic reaction; ess products/reduce yield;		[1] [1]
		(iii)	keep	os rate high / increase rate at lower temperatures;		[1]

Page 5			Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2012	0620	31
	(c)	4e	betwe	orine 1 bp and 3 nbps; een carbon atom and oxygen atom; n oxygen atom;		[1] [1] [1]
						[Total: 13]
6	(a)	(i)	salt / suga	no acid / peptides; / carboxylate or soap / fatty acid or glycerine / alcoh ars or glucose; ept: named sugar	ol;	[1] [1] [1]
		(ii)	• •	ester;		[1]
				w: named polyester amide;		[1]
				w: nylon		
	(h)	one	corr	ect amide linkage;		[1]
	(6)	sec	ond a	amide linkage correctly orientated – followed by – NHCO –;		
				lic acid	[1]	
	(c)		mine. atura		[1] [1]	
			urated		[1]	
		or:		line potassium manganate(VII); purple/pink to green / brown;		
		or:		s purple; ic potassium manganate(VII)		
			from	purple/pink to colourless; not: clear s purple;		
						[Total: 10]
7	(a)	(i)	melt	ing point is below 25°C;		[1]
	()	(-)	boili	ng point above 25°C; ept: argument based on actual values		[1]
				e: 25°C is between mp and bp = [2]		
		(ii)		ntium loses 2e;		[1]
			sulfu	ır gains 2e;		[1]
				ogen chloride / hydrochloric acid; e pt : sulfurous acid or sulfur dioxide		[1]
		(iv)	(iv) molten strontium chloride has ions/ionic compound;			[1]
				h can move; Ir chloride has no ions / only molecules / molecular	/ covalent;	[1] [1]

Page 6	5	Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2012	0620	31
(b) (i)		ntium carbonate does not dissolve / no efferve : not just reaction is complete	escence;	[
(ii)	to re	move excess/unreacted / undissolved stront	ium carbonate;	[
(iii)	woul	er of crystallisation needed / 6H ₂ O in crystals / d not get hydrated salt / crystals dehydrate; just to obtain crystals	/ would get anhydrous s	salt / [
nur	nber o	of moles of HC <i>l</i> used = $0.05 \times 2 = 0.1$ of moles of SrC <i>l</i> ₂ .6 H ₂ O which could be forme	ed. = 0.05	[[
the per	oretic	one mole of SrC l_2 .6H ₂ O is 267 g al yield of SrC l_2 .6H ₂ O = 0.05 × 267 = 13.35 g ge yield = 6.4/13.35 × 100 = 47.9% 48% of		[[

[Total: 15]